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We study the long-time asymptotic of the solutions to Maxwell’s equation in the case of an upper-hybrid 
resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the 
recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions 
to Maxwell’s equations in the frequency domain were constructed by means of a limiting absorption 
principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was 
obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid 
resonances are a possible scenario for the heating of plasmas, and since they can be a model for the 
diagnostics involving wave scattering in plasmas.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In plasma physics [5,7,17] upper-hybrid resonances may de-
velop at places where a density gradient of charged particles ex-
cited by a strong background magnetic field generates singular 
solutions to Maxwell’s equations. This phenomenon shows up in 
propagation of electromagnetic waves in the outer region of the 
atmosphere, as explained first in [6]. It also appears in reflectome-
try experiments [21,11] and in heating devices in fusion plasma 
[16] in Tokamaks. An important feature in this direction is the 
energy deposit which is finite. It may exceed by far the energy 
exchange which occurs in Landau damping [17,25]. Notice how-
ever that there exist situations where hybrid resonance and Landau 
damping are modeled in a unique set [13,26]. Furthermore, our 
model could be applied in diagnostics involving wave scattering at 
the upper-hybrid resonance [21,10].

The starting point of the analysis is the linearized Vlasov–
Maxwell’s equations of a non-homogeneous plasma around a bulk 
magnetic field B0 �= 0. It yields the non-stationary Maxwell’s equa-
tions with a linear current
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⎧⎨⎩
− 1

c2 ∂tE + ∇ ∧ B = μ0J, J = −eNeue,

∂tB + ∇ ∧ E = 0,

me∂tue = −e(E + ue ∧ B0) − meνue.

(1.1)

The electric field is E and the magnetic field is B. The modulus of 
the background magnetic field |B0| and its direction b0 = B0|B0| will 
be assumed constant in space for simplicity in our work. The to-
tal magnetic field is expanded as first order as Btot = B0 + B. Note 
that in the last equation in (1.1) B is neglected. The absolute value 
of the charge of electrons is e, the mass of electrons is me , the ve-

locity of light is c =
√

1
ε0μ0

where the permittivity of vacuum is 
ε0 and the permeability of vacuum is μ0. The third equation cor-
responds to moving electrons with velocity ue , and the electronic 
density Ne is a given function of the space variables. One assumes 
the existence of a bath of particles which is the reason of the fric-
tion between the electrons and the bath of particles with collision 
frequency ν . Much more material about such models can be found 
in classical physical textbooks [5,17]. The loss of energy in domain 
� can easily be computed in the time domain starting from (1.1). 
One obtains

d

dt

∫
�

(
ε0|E|2

2
+ |B|2

2μ0
+ me Ne|ue|2

2

)

= −
∫
�

νme Ne|ue|2 + boundary terms.
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Therefore,

Q(ν) =
∫
�

νme Ne|ue|2 (1.2)

represents the total loss of energy of the electromagnetic field plus 
the electrons in function of the collision frequency ν . Since the 
energy loss is necessarily equal to what is gained by the bath of 
particles, it will be referred to as the heating. In fusion plasma, 
a value of ν ≈ 10−7 in relative units is often encountered. It is 
therefore tempting to set the friction parameter, i.e. the collision 
frequency ν , equal to zero, but this naive approach is incorrect, as 
we explain below.

Equations (1.1) can be written in the frequency domain, where 
ω is the frequency, that is ∂t = −iω where for simplicity of the 
notations ω > 0. We assume that the bulk magnetic field is along 
the z coordinate, i.e. b0 = (0, 0, 1). We obtain,⎧⎨⎩

1
c2 iωE + ∇ ∧ B = −μ0eNeue,

−iωB + ∇ ∧ E = 0,

−imeωue = −e(E + ue ∧ B0) − meνue.

(1.3)

One can compute the velocity using the third equation ω̃ue +
ωc iue ∧ b0 = − e

me
iE where the cyclotron frequency is ωc = e|B0|

me
. 

The frequency ω̃ = ω+ iν is shifted in the complex plane by a fac-
tor equal to the friction parameter. It is then easy to eliminate ue
from the first equation of the system (1.3) and to obtain the time 
harmonic Maxwell’s equation

∇ ∧ ∇ ∧ E −
(

ω

c

)2

ε(ν)E = 0. (1.4)

The dielectric tensor is the one of the cold plasma approximation, 
the so-called Stix tensor, [7,17]

ε(ν) =

⎛⎜⎜⎜⎝
1 − ω̃ω2

p

ω(ω̃2−ω2
c )

i
ωcω

2
p

ω(ω̃2−ω2
c )

0

−i
ωcω

2
p

ω(ω̃2−ω2
c )

1 − ω̃ω2
p

ω(ω̃2−ω2
c )

0

0 0 1 − ω2
p

ωω̃

⎞⎟⎟⎟⎠ . (1.5)

The parameters of the dielectric tensor are the cyclotron frequency 
ωc and the plasma frequency ωp =

√
e2 Ne
ε0me

which depends on the 
electronic density Ne . We are interested in the physical situation 
where the electronic density Ne is not constant, that is ∇Ne �= 0. 
Observe that the cyclotron frequency ω = ωc is a singularity of the 
dielectric tensor. In this paper we consider ω �= ωc , hence, the di-
electric tensor (1.5) is smooth. In fact, we focus on the paradoxical 
upper-hybrid resonance that appears when ω = ωh :=

√
ω2

c + ω2
p . 

In plasma physics ωh is called the upper-hybrid frequency.
If we set ν = 0 the first two diagonal entries in the Stix ten-

sor are equal to ω2−ω2
H

ω2−ω2
p

. The crucial issue is that they are equal 
to zero when ω = ωH and that they continuously change in sign 
when ω increases from values smaller than ωH to values bigger 
than ωH . For this reason (see [15]) the system (1.4) with ν = 0
is ill posed: the solution is not unique and, furthermore, it has 
singular solutions that contain distributions. The way out of this 
dilemma [15] is a limiting absorption principle, we take ν to zero 
in a limiting sense: We consider ν > 0 small and we construct an 
unique solution to (1.4) characterized by its behavior at the point 
in space where ωH = ω and by demanding that it goes to zero at 
spacial infinity, away from the sources of the electromagnetic field 
(the system (1.3) is assumed to be coercive (non-propagating) at 
infinity). We call it the singular solution. We then prove that as 
ν ↓ 0 the singular solution converges (in distribution sense) to a 

limiting singular solution that is the appropriate physical solution 
to our problem. Furthermore, we give a formula for the limiting 
heating Q(0+) := limν↓0 Q(ν), that turns out to be positive. The 
fact Q (0+) > 0 implies that the hybrid resonance is able to trans-
fer a finite amount of energy from the electromagnetic field and 
the electrons to the bath of particles (i.e. to heat bath of particles) 
even in the limit when ν = 0. This is, indeed, a remarkable result. 
The physical interpretation is that as ν goes to zero – and the so-
lution becomes singular – the velocity of the electrons increases 
(since the friction with the ions goes to zero) and there is a com-
pensation in the right-hand side of (1.2). In the end, the increase 
in the velocity of the electrons dominates, so that, in the limit the 
heating Q(0+) is positive. Moreover, from the mathematical point 
of view, the fact that the singular solution with ν > 0 converges to 
a limiting singular solution implies that for ν small the singular so-
lution is close to the limiting singular solution and, hence, it does 
not change very much with ν . This means that a small ν positive 
can be used as a regularization parameter to numerically compute 
the limiting singular solution and the limiting heating Q(0+). This 
numerical scheme has been successfully used in the Ph.D. thesis
[20] that contains extensive numerical calculations. It was found 
that the numerical solution with small ν > 0 converges fast to the 
exact solution (with ν = 0) in point-wise sense, except of course, 
at the singularity. Moreover, a large fraction of the energy of the 
incoming wave may be absorbed by the bath of particles, up to 
95% in the case of normal incidence, and up to 76.7% in the case 
of oblique incidence. Our results in [15,20], in particular our for-
mula for the heating Q(0+) shows, in a rigorous and quantitative 
way, that upper-hybrid resonances are, indeed, an efficient method 
to heat the bath of particles.

We now present, for later use, our results in [15] in a precise 
way. To study the upper-hybrid resonance we consider the 2 × 2
upper-left block in (1.4), that corresponds to the transverse electric 
(TE) mode, E = (Ex, E y, 0), where the electric field is transverse 
to the bulk magnetic field B0. We assume that we have a slab 
geometry: all coefficients in (1.5) depend only on the coordinate x. 
Furthermore, we suppose that Ex , E y , are independent of z, that is 
the coordinate along the bulk magnetic field B0.

Then, in the limit case ν = 0, the 2 × 2 upper-left block in (1.4)
gives⎧⎨⎩ W +∂y Ex −∂x E y = 0,

∂y W −αEx −iδE y = 0,

−∂xW +iδEx −αE y = 0,

(1.6)

where we find convenient to introduce the vorticity W := ∂x E y −
∂y Ex that is proportional to the magnetic field Bz . The coefficients 
α, δ are equal to

α = ω2

c2

(
1 − ω2

p

ω2 − ω2
c

)
and δ = ω2

c2
× ωcω

2
p

ω(ω2 − ω2
c )

. (1.7)

In plasma physics the system (1.6) is called the equations for the X-
mode, or the extraordinary mode, and also the extraordinary wave.

We consider the system (1.6) in the two dimensional domain,

� = {
(x, y) ∈R

2, −L ≤ x, y ∈R, L > 0
}
.

We assume the non-homogeneous boundary condition

W + iλnx E y = g on the left boundary x = −L, λ > 0, (1.8)

that corresponds to a source, like a radiation antenna that is used 
to heat the plasma. We suppose that α and δ satisfy conditions 
that correspond to an upper-hybrid resonance at x = 0. The main 
assumptions are: The function α is twice continuous differentiable 
and δ is continuous with continuous first derivative. Furthermore, 
α(0) = 0, α′(0) < 0, and α �= 0 for x �= 0. Furthermore, δ(0) �= 0. 
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