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We study the long-time asymptotic of the solutions to Maxwell’s equation in the case of an upper-hybrid
resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the
recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions
to Maxwell’s equations in the frequency domain were constructed by means of a limiting absorption
principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was

obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid
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resonances are a possible scenario for the heating of plasmas, and since they can be a model for the
diagnostics involving wave scattering in plasmas.
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1. Introduction

In plasma physics [5,7,17] upper-hybrid resonances may de-
velop at places where a density gradient of charged particles ex-
cited by a strong background magnetic field generates singular
solutions to Maxwell’s equations. This phenomenon shows up in
propagation of electromagnetic waves in the outer region of the
atmosphere, as explained first in [6]. It also appears in reflectome-
try experiments [21,11] and in heating devices in fusion plasma
[16] in Tokamaks. An important feature in this direction is the
energy deposit which is finite. It may exceed by far the energy
exchange which occurs in Landau damping [17,25]. Notice how-
ever that there exist situations where hybrid resonance and Landau
damping are modeled in a unique set [13,26]. Furthermore, our
model could be applied in diagnostics involving wave scattering at
the upper-hybrid resonance [21,10].

The starting point of the analysis is the linearized Vlasov-
Maxwell’s equations of a non-homogeneous plasma around a bulk
magnetic field Bg # 0. It yields the non-stationary Maxwell’s equa-
tions with a linear current
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_C]_zatE‘i‘V/\B:MOJ, J=—eNeu,,
B+ V AE=0, (1.1)
medrUe = —e(E 4+ ue A Bg) — mevue.

The electric field is E and the magnetic field is B. The modulus of
the background magnetic field |Bg| and its direction by = ‘% will
be assumed constant in space for simplicity in our work. The to-
tal magnetic field is expanded as first order as Byt = By + B. Note
that in the last equation in (1.1) B is neglected. The absolute value
of the charge of electrons is e, the mass of electrons is me, the ve-

locity of light is ¢ = 801% where the permittivity of vacuum is

&0 and the permeability of vacuum is . The third equation cor-
responds to moving electrons with velocity u., and the electronic
density N, is a given function of the space variables. One assumes
the existence of a bath of particles which is the reason of the fric-
tion between the electrons and the bath of particles with collision
frequency v. Much more material about such models can be found
in classical physical textbooks [5,17]. The loss of energy in domain
Q can easily be computed in the time domain starting from (1.1).
One obtains

d colE2  |B]2  m.N,|u,|?
_/ O||+||+ee|e|
dt 2 210 2

Q

=— / vmeN, |ue|2 + boundary terms.
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Therefore,
o) = / Vit Neue (12)
Q

represents the total loss of energy of the electromagnetic field plus
the electrons in function of the collision frequency v. Since the
energy loss is necessarily equal to what is gained by the bath of
particles, it will be referred to as the heating. In fusion plasma,
a value of v 2 1077 in relative units is often encountered. It is
therefore tempting to set the friction parameter, i.e. the collision
frequency v, equal to zero, but this naive approach is incorrect, as
we explain below.

Equations (1.1) can be written in the frequency domain, where
w is the frequency, that is 3 = —iw where for simplicity of the
notations w > 0. We assume that the bulk magnetic field is along
the z coordinate, i.e. bg = (0, 0, 1). We obtain,

5iwE+ V AB=—j10eNeue,
—iwB+V AE=0, (13)
—imewue = —e(E 4+ ue A Bg) —mMeVUe.

One can compute the velocity using the third equation @u, +

. e . e[Bo|
wcite Abg = —m—elE where the cyclotron frequency is w, = o
The frequency @ = w +iv is shifted in the complex plane by a f;c—
tor equal to the friction parameter. It is then easy to eliminate u,
from the first equation of the system (1.3) and to obtain the time

harmonic Maxwell’s equation

w2
VAVAE—- (;) EWE=0. (1.4)

The dielectric tensor is the one of the cold plasma approximation,
the so-called Stix tensor, [7,17]
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The parameters of the dielectric tensor are the cyclotron frequency
¢ and the plasma frequency w, = iﬁi which depends on the

electronic density N.. We are interested in the physical situation
where the electronic density N, is not constant, that is VN, # 0.
Observe that the cyclotron frequency w = w, is a singularity of the
dielectric tensor. In this paper we consider w # wc, hence, the di-
electric tensor (1.5) is smooth. In fact, we focus on the paradoxical

upper-hybrid resonance that appears when @ = wj, 1= \/w? + @3.

In plasma physics wy, is called the upper-hybrid frequency.
If we set v =0 the first two diagonal entries in the Stix ten-

2
i The crucial issue is that they are equal
—o?

to zero when @w = wy and that they continuously change in sign
when w increases from values smaller than wy to values bigger
than wy. For this reason (see [15]) the system (1.4) with v =10
is ill posed: the solution is not unique and, furthermore, it has
singular solutions that contain distributions. The way out of this
dilemma [15] is a limiting absorption principle, we take v to zero
in a limiting sense: We consider v > 0 small and we construct an
unique solution to (1.4) characterized by its behavior at the point
in space where wy = w and by demanding that it goes to zero at
spacial infinity, away from the sources of the electromagnetic field
(the system (1.3) is assumed to be coercive (non-propagating) at
infinity). We call it the singular solution. We then prove that as
v | 0 the singular solution converges (in distribution sense) to a

2
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limiting singular solution that is the appropriate physical solution
to our problem. Furthermore, we give a formula for the limiting
heating Q(0%) := lim, o Q(v), that turns out to be positive. The
fact Q (0™) > 0 implies that the hybrid resonance is able to trans-
fer a finite amount of energy from the electromagnetic field and
the electrons to the bath of particles (i.e. to heat bath of particles)
even in the limit when v = 0. This is, indeed, a remarkable result.
The physical interpretation is that as v goes to zero — and the so-
lution becomes singular - the velocity of the electrons increases
(since the friction with the ions goes to zero) and there is a com-
pensation in the right-hand side of (1.2). In the end, the increase
in the velocity of the electrons dominates, so that, in the limit the
heating Q(0%) is positive. Moreover, from the mathematical point
of view, the fact that the singular solution with v > 0 converges to
a limiting singular solution implies that for v small the singular so-
lution is close to the limiting singular solution and, hence, it does
not change very much with v. This means that a small v positive
can be used as a regularization parameter to numerically compute
the limiting singular solution and the limiting heating Q(0*). This
numerical scheme has been successfully used in the Ph.D. thesis
[20] that contains extensive numerical calculations. It was found
that the numerical solution with small v > 0 converges fast to the
exact solution (with v = 0) in point-wise sense, except of course,
at the singularity. Moreover, a large fraction of the energy of the
incoming wave may be absorbed by the bath of particles, up to
95% in the case of normal incidence, and up to 76.7% in the case
of oblique incidence. Our results in [15,20], in particular our for-
mula for the heating Q(0™) shows, in a rigorous and quantitative
way, that upper-hybrid resonances are, indeed, an efficient method
to heat the bath of particles.

We now present, for later use, our results in [15] in a precise
way. To study the upper-hybrid resonance we consider the 2 x 2
upper-left block in (1.4), that corresponds to the transverse electric
(TE) mode, E = (Ex, Ey,0), where the electric field is transverse
to the bulk magnetic field Bg. We assume that we have a slab
geometry: all coefficients in (1.5) depend only on the coordinate x.
Furthermore, we suppose that Ex, Ey, are independent of z, that is
the coordinate along the bulk magnetic field By.

Then, in the limit case v =0, the 2 x 2 upper-left block in (1.4)
gives

W +0yEx —0xEy =0,
oyW —aEy —isE, =0, (1.6)
—0xW +idExy —aEy =0,
where we find convenient to introduce the vorticity W := 9xEy, —

dyEx that is proportional to the magnetic field B,. The coefficients
o, § are equal to

2 2 2 2
® 1) w Wew
a=2 (1-—"2 ) and 5=2 x—"F _ a7
c2 w? — w? 2 w(w?—w)

In plasma physics the system (1.6) is called the equations for the X-
mode, or the extraordinary mode, and also the extraordinary wave.
We consider the system (1.6) in the two dimensional domain,

Q={(xyeR’® -L<x, yeR, L>0}

We assume the non-homogeneous boundary condition

W +iinyE, = g on the left boundary x = —L, A>0, (18)

that corresponds to a source, like a radiation antenna that is used
to heat the plasma. We suppose that o and § satisfy conditions
that correspond to an upper-hybrid resonance at x = 0. The main
assumptions are: The function « is twice continuous differentiable
and § is continuous with continuous first derivative. Furthermore,
«(0) =0,a'(0) <0, and o # 0 for x # 0. Furthermore, §(0) # 0.
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