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The Landau damping effects on the occurrence scattering time in electron collisions are investigated in a 
quantum plasma composed of electrons and holes. The Shukla–Stenflo–Bingham effective potential model 
is employed to obtain the occurrence scattering time in a quantum electron–hole plasma. The result 
shows that the influence of Landau damping produces the imaginary term in the scattering amplitude. It 
is then found that the Landau damping generates the retardation effect on the occurrence scattering time. 
It is found that the occurrence scattering time increases in forward scattering domains and decreases 
in backward scattering domains with an increase of the Landau parameter. It is also found that the 
occurrence scattering time decreases with increasing collision energy. In addition, it is found that the 
quantum shielding effect enhances the occurrence scattering time in the forward scattering and, however, 
suppresses the occurrence scattering time in the backward scattering.

© 2016 Elsevier B.V. All rights reserved.

The atomic collision process [1–7] is known to be one of the 
most important processes in plasmas and has been extensively 
investigated as a plasma diagnostic tool for determining plasma 
parameters in various astrophysical and laboratory plasmas. It is 
also shown that the electron–electron collisions make contribu-
tions to the collective effects on the electron–ion bremsstrahlung 
spectrum and also to the Lorentzian conductivity in plasmas [8,
9]. The screened Debye–Hückel interaction model [10] has been 
widely used to investigate various atomic processes in weakly cou-
pled classical plasmas since the Yukawa-type Debye–Hückel po-
tential corresponds to the pair correlation approximation in low-
density plasmas. However, it has been shown that the quantum–
mechanical and multiparticle correlation effects due to the simul-
taneous interaction of many particles have to be taken into account 
to represent the plasma shielding phenomena in dense plasmas 
[11–14]. In recent years, there has been a considerable interest 
in the physical characteristic and properties of semiclassical and 
quantum plasmas since dense plasmas are ubiquitous and have 
been also found in various modern nano-scale objects such as 
nano-wires, quantum dot, semiconductor devices, laser produced 
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dense plasmas as well as dense plasmas in astrophysical compact 
objects [15–24]. An effective interaction potential model has been 
obtained by Shukla, Stenflo, and Bingham [14] using the plasma 
dielectric function including the Debye shielding term and the ad-
ditional far-field term due to the Landau damping effect in a quan-
tum plasma composed of electrons and holes. Hence, the electron–
electron collisions in quantum electron–hole plasmas would be 
quite different from those in conventional classical plasmas. It 
has been known that the time-dependence [25–27] in atomic and 
nuclear collisions reveals significant aspects of scattering mecha-
nisms. It has been also shown that the physical property known 
as the occurrence scattering time [26,27] represents the time of 
emergence of the incident wave packet during atomic collisions 
and also characterizes quantum collision processes. The physical 
characteristics of the occurrence scattering time have been inves-
tigated in various plasmas since the angular-dependence of the 
occurrence scattering time in plasmas provides useful information 
on the scattering mechanisms as well as the physical properties of 
the plasma since the occurrence scattering time advance or delay 
would be expected to reveal for charged particle collisions [28–30]. 
Thus, in this Letter, we investigate the Landau damping effects on 
the occurrence scattering time in electron–electron collisions in a 
quantum plasma composed of electrons and holes. The first-order 
Born method is employed to obtain the occurrence scattering time 
by using the Shukla–Stenflo–Bingham effective potential [14] in 
electron–hole plasmas.
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It has been shown that the scattering amplitude obtained by 
the Born approximation [31,32] provides the accurate qualitative 
description of scattering cross sections for collisions with the con-
dition: |V |R/h̄v < 1, where |V | is the typical strength of the in-
teraction potential, R is the range of the potential, h̄ is the ratio-
nalized Planck constant, and v is the collision velocity, since the 
solution of the Schrödinger equation and the scattering cross sec-
tion would be represented by the scattering amplitude f (ki, k f ). 
Hence, the scattering amplitude f (ki, k f ) in the first-order Born 
analysis is represented as the Fourier transform of the interaction 
potential V int(r) such as

f (ki,k f ) = − μ

2π h̄2

∫
d3r exp

[
i(ki − k f ) · r

]
V int(r), (1)

where ki and k f are, respectively, the incident and scattered wave 
vectors, and μ is the reduced mass of the collision system. Re-
cently, a quite useful analytic form of the effective screened elec-
tric potential [14] of the projectile electron in a quantum plasma 
composed of electrons and holes has been obtained by the plasma 
dielectric function D(ω, q), where ω is the frequency and q is the 
wave number. Using the Shukla–Stenflo–Bingham (SSB) effective 
potential model [14], the electron–electron interaction potential 
V SSB(r) for v < vt j in quantum electron–hole plasmas would be 
represented by

V SSB(r) = e2

r
exp(−r/λq) + e2αv

r3
cos θ, (2)

where vt j [= (2E F j/m j)
1/2] is the Fermi thermal speed of the 

particle species j (electron: j = e, hole: j = h), E F j [= (h̄2/2m j)×
(3π2n j)

2/3] is the Fermi energy, m j is the mass of the particle, 
n j is the equilibrium number density, λq (= ∑

j=e,h λ−2
j )−1/2 is 

the effective Debye length, λ j = K −1
F j , K F j (= √

3ωpj/vt j) is the 
Fermi–Thomas screening wave number, ωpj [= (4πn je2/m j)

1/2]
is the plasma frequency, the parameter α related to the Landau 
damping is defined as α ≡ λ4

q
∑

j=e,h λ−2
j v−1

t j , and θ is the an-
gle between the position vector r and the velocity v. As shown 
in Eq. (2), the Shukla–Stenflo–Bingham effective interaction po-
tential [14] encompasses the far-field term caused by the in-
fluence of Landau damping [33], i.e., the singular points in the 
imaginary part of the inverse of the plasma dielectric function 
1/D(ω, q), apart from the standard screened Debye shielding term 
(e2/r) exp(−r/λq). After some mathematical manipulations, the 
scattering amplitude f (k̄i, ̄k f , ϕ) [= | f (k̄i, ̄k f , ϕ)| exp[iη(k̄i, ̄k f , ϕ)]]
for the electron–electron scattering in a quantum plasma is then 
found to be

f (k̄i, k̄ f ,ϕ) = 2a0

Q̄ 2 + λ̄−2
q

[
1 + i

√
2π

4
k̄
λ̄4

q

a2
0

∑
j=e,h

λ̄−2
j (v0/vts)

× (
Q̄ 2 + λ̄−2

q

)]

= 2a0

k̄2
i + k̄2

f − 2k̄ik̄ f cosϕ + λ̄−2
q

[
1 + i

√
2π

4
k̄i

× λ̄4
q

a2
0

∑
j=e,h

λ̄−2
j (v0/vts)

× (
k̄2

i + k̄2
f − 2k̄ik̄ f cosϕ + λ̄−2

q

)]

= f R(k̄i, k̄ f ,ϕ) + i f I (k̄i, k̄ f ,ϕ), (3)

where k̄i (≡ kia0) and k̄ f (≡ k f a0) are the scaled initial and fi-
nal wave numbers, a0 (= h̄2/mee2) is the first Bohr radius of the 

hydrogen atom, me is the mass of the electron, | f (k̄i, ̄k f , ϕ)| is 
the absolute value of the scattering amplitude, η(k̄i, ̄k f , ϕ) is the 
argument of the scattering amplitude, ϕ is the angle between 
ki and k f , i.e., the scattering angle measured in the center of 
mass system, λ̄q (≡ λq/a0) is the scaled effective Debye length, 
λ̄ j ≡ λ j/a0, v0 (= α f c) is the Bohr velocity, α f (= e2/h̄c ≈ 1/137)

is the fine structure constant, c is the speed of the light, and Q̄ ≡
Q (ki, k f , ϕ)a0. Here, Q (ki, k f , ϕ) [= (k2

i + k2
f − 2kik f cosϕ)1/2] is 

the momentum transfer, f R(k̄i, ̄k f , ϕ) and f I (k̄i, ̄k f , ϕ) are the real 
and imaginary parts of the scattering amplitude, respectively. It 
is shown that the scattering amplitude is essential to investigate 
the physical characteristics of the collision dynamics as well as 
the physical properties of the collision system [25]. For elastic col-
lisions, i.e., ki = k f (≡ k), the occurrence scattering time [26,27]
τ would be represented by the first-derivative of the argument η
of the scattering amplitude with respect to the initial wave num-
ber ki :

τ (k,ϕ) = μ

kih̄

(
∂η

∂ki

)∣∣∣∣
ki=k f =k

, (4)

when the collision center of the free wave packet is assumed to 
be reached the origin r = 0 at t = 0. For elastic electron–electron 
collisions, the real and imaginary parts of the scattering amplitude 
and the partial derivative of the scattering amplitude in quantum 
electron–hole plasmas are, respectively, found to be

f R(k̄i, k̄ f ,ϕ)|k̄i=k̄ f =k̄ = f R(Ē,ϕ) = 2a0

2Ē sin2(ϕ/2) + λ̄−2
q

, (5)

f I (k̄i, k̄ f ,ϕ)|k̄i=k̄ f =k̄ = f I (Ē,ϕ) = πa0

2
ᾱ Ē1/2, (6)

∂

∂k̄
f R(k̄i, k̄ f ,ϕ)

∣∣∣∣
k̄i=k̄ f =k̄

= − 2a0 sinϕ

[2Ē sin2(ϕ/2) + λ̄−2
q ]2

, (7)

and

∂

∂k̄
f I (k̄i, k̄ f ,ϕ)

∣∣∣∣
k̄i=k̄ f =k̄

= πa0√
2

ᾱ, (8)

since Q (k̄i, ̄k f , ϕ)|k̄i=k̄ f =k̄ = 2
√

Ē sin(ϕ/2), where k̄ ≡ ka0,

Ē (≡ E/R y = 2k̄2) is the scaled collision energy, E (= μv2/2) is 
the collision energy, R y (= mee4/2h̄2 ≈ 13.6 eV) is the Rydberg 
constant, and ᾱ ≡ v0α/a2

0. The scaled occurrence scattering time 
τ̄ (k̄, ϕ) (≡ τ v/a0) for the elastic collision is then given by

τ̄ (k̄,ϕ) = 1

f 2
R (k̄i, k̄ f ,ϕ) + f 2

I (k̄i, k̄ f ,ϕ)

×
(

f R(k̄i, k̄ f ,ϕ)
∂ f I (k̄i, k̄ f ,ϕ)

∂k̄i

− f I (k̄i, k̄ f ,ϕ)
∂ f R(k̄i, k̄ f ,ϕ)

∂k̄i

)∣∣∣∣
k̄i=k̄ f =k̄

. (9)

From Eq. (3), we have found that the influence of Landau damping 
on the electron–electron collision process in electron–hole plas-
mas generates the imaginary part f I (k̄i, ̄k f , ϕ) of the scattering 
amplitude. If we neglect the Landau damping effects, the scat-
tering amplitude becomes a real function so that the occurrence 
scattering time turns out to be zero. It is interesting to note that 
the imaginary part f I (k̄i, ̄k f , ϕ) causes the time advance or delay 
on the occurrence scattering time. After some algebra, the Lan-
dau retardation effect on the scaled occurrence scattering time 
τ̄LR(Ē, ̄λq, ᾱ, ϕ) for the electron–electron collision is found to be 
the following form:
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