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In numerical simulations, “isotropic” turbulent flows are always generated by using periodic conditions. 
We show that these periodic conditions mathematically lead to large-scale anisotropy which can be 
about 10% of the mean values, and thus prevent existing post-processing results from being accurate. 
A decomposition method by employing spherical harmonics is then proposed to distinguish this scale-
dependent anisotropy effect from others and to minimize the related post-processing error.
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1. Introduction

In order to numerically generate three-dimensional homoge-
neous isotropic turbulent (HIT) flows, the commonly-used method 
is to assume three-dimensional periodic conditions in a cube. 
There have been enormous literatures following this methodology, 
for instance Refs. [1–8]. These generated data are widely used in 
various topics, including the analysis of small-scale isotropic struc-
tures [9–12]. It is then quite important to know that in which 
range the turbulent flow can be isotropic. In particular, the upper 
bound of this isotropic range corresponds to the largest isotropic 
scale, which is usually considered to be the order of energy-
containing scale or integral scale. However, to our knowledge, 
there is still no systematic discussion on this largest isotropic scale 
for the numerically generated turbulent flows with a cubic box and 
the periodic boundary condition applied in all directions.

Practical numerical calculations usually consider a cube with 
length R = 2π in each direction. From existing direct numeri-
cal simulations (DNS) the integral scale is usually chosen to be 
smaller than 1.4 to avoid the influence of cube (see e.g. Refs. [5,2,
13,14]). One of the few discussions on this influence can be found 
from Gotoh et al. [14], who remarked that the small number of 
energy-containing Fourier modes can cause large-scale anisotropy, 
which is measured by comparing the longitudinal and transverse 
structure functions. However, as will be analyzed in the present 
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paper, this is a tensor-level anisotropy effect that is presented as 
redistribution among tensor components, whereas the lower-level 
anisotropy effect, which stems from periodic conditions, has not 
been systematically discussed.

In the present paper, we aim at discussing the large-scale in-
fluence of the periodic condition in a cube. By theoretical and 
numerical investigations, it will be shown that there always ex-
ists obvious anisotropy among the axis directions, the face diagonal 
directions and the cube diagonal directions, which even leads to 
different summation structure functions along these directions. We 
will show that this anisotropy effect differs from traditional tensor-
level studies and is a congenital defect of numerical simulations. 
Decomposition by spherical harmonics functions will quantitatively 
show this large-scale anisotropy influence.

2. Descriptions of problem

In this section, we start from a 2D description and show that 
there is always anisotropy influence from periodic conditions to 
smaller scales. Unlike the discussions of Gotoh et al. [14], this 
anisotropy is expressed as a difference between the longitudinal 
structure functions in the axis directions and the face diagonal di-
rections. It would also be easy to extend the following analysis to 
a 3D cube and to add cube diagonal directions into comparison.

See Fig. 1 as a sketch. The square ABC D is a periodic domain 
in both directions. In the following we consider a scalar field and a 
vector field respectively to express the problem and to clarify the 
difference between the present problem and traditional studies.
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Fig. 1. Two-dimensional sketch for the anisotropy of longitudinal structure functions 
in the axis directions and the face diagonal directions.

2.1. Second-order structure function in a scalar field

We consider a scalar field � in the periodic domain and expect 
it to be homogeneous isotropic. From periodic conditions we have

�(A) = �(B) = �(C) = �(D). (1)

Then we define the ensemble average operation as 〈〉. In partic-
ular, the second-order structure function at a two-point displace-
ment is defined as

S(x, r) = 〈(�(x + r) − �(x))2〉. (2)

Because of homogeneity,1 it can also be rewritten as

S(r) = 〈(�(A + r) − �(A))2〉. (3)

Under ideal isotropy, we can calculate the second-order structure 
function of a two-point distance r by an average operation on a 
1/4 circumference (which is also frequently employed in practical 
post-processing procedures):

S(r) = 2

πr

π/2∫
0

S(r)rdα. (4)

With the isotropy assumption, S(r) does not depend on the angle 
α and can exit the integer, and this equation will be simplified to 
the identical equation S(r) = S(r).

When the periodic conditions are involved, additional restric-
tions are implied at large scales. For example with the periodicity 
�(A) = �(B), we can rewrite Eq. (3) as

S(r) = 〈(�(A + r) − �(B))2〉. (5)

Since A + r = B + s we have

S(r) = S(s). (6)

When we perform the average operation (4), this can also be re-
garded as an integration over the arc E ′G ′:

S(r) = 2

π

π/2∫
0

S(r + (A − B))dα. (7)

Note that this equation is derived by using the periodic condition 
in the direction of AB . The periodic conditions in other directions 
can lead to other equations, but the discussions are similar. The 
assumption of isotropy implies that the statistical variables do not 
depend on the direction. Hence Eq. (7) can be simplified as

1 We remark that non-trivial homogeneous scalar fields can exist with periodic 
boundary conditions. For construction, we suppose that a scalar field � is periodic 
at time 0 and is advected by a non-zero constant velocity, then using time average 
instead of ensemble average can lead to the independence of x in Eq. (2).

S(r) = 2

π

π/2∫
0

S(s)dα. (8)

From the law of cosines s = (R2 + r2 − 2Rr cosα)1/2, it leads to

S(r) = 2

π

π/2∫
0

S((R2 + r2 − 2Rr cosα)1/2)dα. (9)

With the initial condition S(0) = 0, one puts r = 0 in Eq. (9) and 
can immediately obtain S(R) = 0. Then, putting r = R in Eq. (9)
and by noting that Eq. (9) can be rewritten in the following for-
mula when r = R:

0 = S(R) =
√

2R∫
0

S(s)w(s)ds, (10)

with a weight function w(s) = 2s/(4R2s2 − s4)1/2, which satisfies 
that ∀0 < s < 2R, w(s) > 0. From Eq. (3) we also have S(s) ≥ 0. 
Continuity of S(s) then implies that ∀0 ≤ s ≤ √

2R, S(s) ≡ 0 (oth-
erwise, supposing S(t) > 0 with 0 < t ≤ √

2R , ∃ε > 0, s.t.∀τ ∈ (t −
ε, t + ε), S(τ ) > 0, then 

∫ √
2R

0 S(s)w(s)ds ≥ ∫ t+ε
t−ε S(s)w(s)ds > 0

which conflicts with Eq. (10)) which is a non-physical trivial so-
lution. In order to show the influence on a real field, we assume 
a classical scaling behavior S(r) = r2/3, then the right hand side of 
Eq. (9) can be simplified as

Ssl(r) = 2

πr

π/2∫
0

(R2 + r2 − 2Rr cosα)1/3rdα, (11)

where Ssl means using the scaling law. Clearly, a paradox arises 
that Ssl(r) is not of the order r2/3. Fig. 2 shows the scaling behav-
iors of Ssl(r), where R = 1. From Fig. 2(a) we find that r−2/3 Ssl(r)
is not constant; from Fig. 2(b) the scaling exponent of Ssl(r) is not 
2/3 either. Note that this is just a specific example to show that 
any isotropic scaling cannot be guaranteed, while for any other 
scalings the conclusions are the same. This obviously illustrates the 
necessity of investigating the influence of large-scale periodic con-
dition.

Note that from Ref. [15] we can also find another effect of the 
domain size: when the domain size is not large enough (e.g. the 
order of integral scale), some intermittency is observed. By con-
trast, from the present study, we show that the periodical domain 
can also lead to (large-scale) anisotropy.

2.2. Second-order structure function in a vector field

Consider the structure functions in a vector field. Similarly to 
the previous subsection, we can define the summation Dii(r) =
〈(ui(A + r) − ui(A))(ui(A + r) − ui(A))〉 which is a scalar function. 
It is easy to show that the conclusions in the previous subsection 
are also satisfied for Dii(r). In particular, the periodic condition 
prevents Dii(r) from being isotropic.

In practice we are usually interested in the behavior of the 
longitudinal structure function, defined as Dll(r) = 〈(ul(A + r) −
ul(A))2〉 with l the direction of r, rather than the summation 
Dii(r). By defining the transverse structure function Dnn(r) =
〈(un(A +r) −un(A))2〉 with n the normal direction to r, the tensor-
level isotropic condition yields

Dnn(r) = Dll(r) + r

2

dDll(r)

dr
, (12)

which implies the relation
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