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We study the possibility to control the spin polarization and spin-dependent transport in a graphene 
sheet by considering a ferromagnetic layer in the presence of the Rashba spin–orbit interaction. Studying 
the scattering problem with the help of the Green function (which was found explicitly), we obtained 
simple analytical expressions for the spin dependent transmission probability. Using the small exchange 
parameter and Rashba coupling constant, we can obtain any degree of spin polarization, but in the case 
of a small interaction region, only for slow electrons.
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1. Introduction

The transport properties of the graphene continue to attract a 
lot of attention due to the possible applications in nanoelectronic 
devices [1,2]. These applications require the control of the spin cur-
rent, often using the exchange interaction and Rashba spin–orbit 
coupling [3–6].

In this paper, we study with mathematical rigor the possibility 
to control the spin polarization and spin-dependent transport in a 
graphene sheet by considering a ferromagnetic substrat (or cover 
layer) in the presence of the Rashba spin–orbit interaction [7]. As 
a result, the exchange field can be induced in graphene due to the 
magnetic proximity effect [8]. The Rashba coupling can arise from 
symmetry breaking generated by a ferromagnetic layer or by an 
external electric field.

We consider two extreme cases, when the region with a ferro-
magnetic layer and Rashba interaction is infinitely extended and 
when it is sufficiently localized. It turns out that, as in other 
quasi-one-dimensional systems [9,10], the small interactions can 
in both cases significantly affect the scattering and polarization 
of electrons. Considering the scattering problem, in some cases 
we obtained simple analytical expressions for the spin dependent 
transmission probability. Since the conductance is approximately 
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proportional to the transmission probability [11], in fact we are 
dealing with the conductance.

It has been found that in the case of the sufficiently large in-
teraction region, for small Fermi energy, μ, and α where μ is the 
exchange field parameter, and α is the Rashba coupling strength, 
theoretically we can obtain any degree of spin polarization by the 
choice of the value μ/α, and the conductance does not depend on 
the presence of an impurity. We note that the spin polarization in-
creases with increasing μ/α. If the Fermi energy is high enough, 
a large polarization can be obtained for a small impurity potential 
and slow electrons. In the case of the small interaction region, we 
can achieve a significant degree of polarization of initially unpo-
larized current only for slow electrons and if the Fermi energy is 
large enough.

2. Green function in the case of constant α and μ

We use the Hamiltonian H = H0 + H R + Hμ . Here H0 for both 
spin components in the one-valley approximation is given by [12]

H0 = h̄v F (σ1∂/∂x + σ2∂/∂ y)

where h̄ is the Planck constant, v F > 0 is the Fermi velocity, 
and σ j , j = 1, 2 are the Pauli matrices acting on the pseudospin 
components [12]; further without loss of generality, we consider 
h̄v F = 1. This term is the Dirac Hamiltonian for massless fermions. 
The Rashba term reads [7] H R = α(σ2s1 − σ1s2); here α = const is 
the strength of the Rashba spin–orbit coupling and s j , j = 1, 2, 3
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are the Pauli matrices acting in the spin space. The effect of 
the ferromagnetic layer is described by the exchange Hamiltonian 
Hμ = μsz [6,7] where μ is the effective exchange field. Hamilto-
nian H acts on the functions

ψ(x, y) = (ψ1(x, y),ψ2(x, y),ψ ′
1(x, y),ψ ′

2(x, y)) (1)

with the domain −∞ < x < ∞, 0 ≤ y ≤ l satisfying periodic 
boundary conditions ψ(x, 0) = ψ(x, l). This means neglecting the 
boundary effects, and l is assumed to be large enough. The index 
j = 1, 2 in (1) indicates the pseudospin components; the com-
ponents ψ1, ψ2 (ψ ′

1, ψ ′
2) correspond to the spin-up (spin-down, 

respectively) electrons. We note that similar Hamiltonians are used 
in the study of the anomalous Hall effect [6].

In this section, we suppose that α, μ = const; it corresponds 
to the great length as the ferromagnetic layer, and the region of 
the Rashba interaction. To study the scattering problem by the 
Lippmann–Schwinger equation, we need the Green function of H . 
We will find the Green operator (H − E)−1 by solving the equation

(H − E)ψ = ϕ (2)

with respect to ψ . Expanding ψ = ψ(x, y) in the basis (1/
√

l)×
exp(−2π iny/l), n = 0, ±1, ±2, . . . at fixed x, we obtain

ψ
(′)
j (x, y) = 1√

l

∞∑
n=−∞

ψ
(′)
jn (x)exp(−2π iny/l), j = 1,2. (3)

Using (1), (3), we write (2) as the set of independent linear sys-
tems of the form

−idψ2n/dx + (2π in/l)ψ2n − (E − μ)ψ1n = ϕ1n,

−idψ1n/dx − (2π in/l)ψ1n + 2iαψ ′
1n − (E − μ)ψ2n = ϕ2n,

−idψ ′
2n/dx + (2π in/l)ψ ′

2n − 2iαψ2n − (E + μ)ψ ′
1n = ϕ′

1n,

−idψ ′
1n/dx − (2π in/l)ψ ′

1n − (E + μ)ψ ′
2n = ϕ′

2n, (4)

n = 0, ±1, ±2, . . . . Thus, H can be considered as the operator 
acting on functions ψn(x) = (ψ1n(x), ψ2n(x), ψ ′

1n(x), ψ ′
2n(x)) at the 

fixed n. In this case, we will talk about the energy spectrum or the 
scattering in the nth subband.

After Fourier transform ψ̂(k) = 1√
2π

∫
R

e−ikxψ(x)dx, we obtain 
from (4) the system

(k + 2π in/l)ψ̂2n − (E − μ)ψ̂1n = ϕ̂1n,

(k − 2π in/l)ψ̂1n + 2iαψ̂ ′
1n − (E − μ)ψ̂2n = ϕ̂2n,

(k + 2π in/l)ψ̂ ′
2n − 2iαψ̂2n − (E + μ)ψ̂1n = ϕ̂′

1n,

(k − 2π in/l)ψ̂ ′
1n − (E + μ)ψ̂ ′

2n = ϕ̂′
2n, (5)

n = 0, ±1, ±2, . . . . The determinant of this system is equal to

�n(E,k) = [(E − μ)2 − (k2 + (2πn/l)2)]
× [(E + μ)2 − (k2 + (2πn/l)2)]
− 4α2(E2 − μ2). (6)

It is obvious that the energy subbands decrease with increas-
ing |n|, therefore, the spectrum of H coincides with the spectrum 
in the 0th subband and is the union of 

(−∞, −|αμ|/√α2 + μ2
)

and 
(|αμ|/√α2 + μ2, ∞)

. If α, μ �= 0, then there is a gap in the 
spectrum.

To find the Green function of the Hamiltonian H , it is sufficient 
to solve the system (5) for an arbitrary n. We introduce the nota-
tion

k±
n =

√
E2 − (2πn/l)2 + μ2 ± 2

√
E2(α2 + μ2) − α2μ2, (7)

then, by (6),

1

�n(E,k)
= 1

(k+
n )2 − (k−

n )2

(
1

(k−
n )2 − k2

− 1

(k+
n )2 − k2

)
. (8)

Using (8), Cramer’s rule, and known formula 1√
2π

∫
R

eikxϕ̂(k)

k2−a2 dk =
− 1

2ia

∫
R

eia|x−x′ |ϕ(x′)dx′ , we can derive the Green function of H in 
the coordinate representation:

ψ1n(x) = ((H − E)−1ϕ)1n(x)

= 1

2ik+
n

∫
R

ek+
n |x−x′|

(
−(E − μ)ϕ1n(x′)

− (
k+

n sgn(x − x′) + 2π in/l
)
ϕ2n(x′)

+ 2iαϕ′
2n(x′) − 1

(k+
n )2 − (k−

n )2

×
(

−2
(

Eμ +
√

E2(α2 + μ2) − α2μ2
)(

(E − μ)ϕ1n(x′)

+ (
k+

n sgn(x − x′) + 2π in/l
)
ϕ2n(x′)

)
+ 4α2(E + μ)ϕ1n(x′)
− 2iα

(
k+

n sgn(x − x′) + 2π in/l
)
(E + μ)ϕ′

1n(x′)

− 2iα
(

E2 + μ2 − 2
√

E2(α2 + μ2) − α2μ2

− 2(2πn/l)2 + (4π in/l)k+
n sgn(x − x′)

)
ϕ′

2n(x′)
))

dx′

+ 1

2ik−
n ((k+

n )2 − (k−
n )2)

∫
R

ek−
n |x−x′|

(
−2

(
Eμ

+
√

E2(α2 + μ2) − α2μ2
)(

(E − μ)ϕ1n(x′)

+ (
k−

n sgn(x − x′) + 2π in/l
)
ϕ2n(x′)

)
+ 4α2(E + μ)ϕ1n(x′)
− 2iα

(
k−

n sgn(x − x′) + 2π in/l
)
(E + μ)ϕ′

1n(x′)

− 2iα
(

E2 + μ2 − 2
√

E2(α2 + μ2) − α2μ2

− 2(2πn/l)2 + (4π in/l)k−
n sgn(x − x′)

)
ϕ′

2n(x′)
)

dx′;

ψ2n(x) = ((H − E)−1ϕ)2n(x)

= 1

2ik+
n

∫
R

ek+
n |x−x′|

(
−(E − μ)ϕ2n(x′)

− (
k+

n sgn(x − x′) − 2π in/l
)
ϕ1n(x′)

+ 1

(k+
n )2 − (k−

n )2

(
2
(

Eμ +
√

E2(α2 + μ2) − α2μ2
)

× (
(E − μ)ϕ2n(x′) + (

k+
n sgn(x − x′) − 2π in/l

)
ϕ1n(x′)

)
+ 2iα(E2 − μ2)ϕ′

1n(x′)

+ 2iα(E − μ)
(
k+

n sgn(x − x′) + 2π in/l
)
ϕ′

2n(x′)
))

dx′

− 1

2ik−
n ((k+

n )2 − (k−
n )2)

∫
R

ek−
n |x−x′|

(
2
(

Eμ

+
√

E2(α2 + μ2) − α2μ2
)(

(E − μ)ϕ2n(x′)
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