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We study the non-equilibrium quantum dynamics of attractive Fermi gases in one- and two-dimensional 
optical lattice. We use the dynamic Bogoliubov–de Gennes (DBdG) method and time-evolving block 
decimation (TEBD) to investigate the expansion dynamics, which can be implemented by suddenly 
removing the harmonic trap. The evolutions of density and superfluid order parameters have been 
calculated. We find that for the noninteracting case, the expansion rate is linear with hopping amplitude, 
which is a ballistic expansion result. And the interaction damps the expansion rate exponentially both in 
one and two dimensions and makes it deviate from the ballistic expansion.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the progress of ultracold atoms in optical lattice have
made it possible not only to simulate equilibrium many-body sys-
tem [1–7], but also to study non-equilibrium quantum system dy-
namics of many-body systems [8–12]. Differently from condensed 
matter physics, the extreme low dissipation rate in the ultracold
atomic systems guarantees the conservation of the system en-
ergy in a relatively long time, thus not only the ground state but 
also the high energy excited state may contribute to the non-
equilibrium dynamics of the many-body systems, which leads to 
interesting novel phenomena that have no counterpart in con-
densed matter physics [13–15]. Furthermore, the interaction in 
ultracold atoms is not only important for the properties of the 
ground state, but also plays a crucial role in determining the many-
body quantum dynamic behavior and has attracted considerable 
attention recently.

In this paper, we study the dynamic evolution of the attrac-
tive interacting Fermi atoms [16–18] in one-dimensional (1D) 
and two-dimensional (2D) optical lattice after removing the har-
monic trap, which is closely related the recent experiments in 
cold atoms [19–21]. We adopt the dynamic Bogoliubov–de Gennes 
(DBdG) method and the time-evolving block decimation (TEBD) 
method to study the non-equilibrium systems. We describe the 
effect of the interaction on the many-body dynamics. DBdG has 
been widely used to study the dynamics of the superconductor or-
der parameter after a sudden quench of the interaction strength 
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[22–28]. In this paper, for 2D optical lattice, we adopt DBdG to 
study the dynamics for the expansion process. Our result shows 
ballistic transport behavior for the noninteracting gas. And the 
weak attractive interaction would damp the velocity of the expan-
sion and make it deviate from the ballistic expansion. For the 1D 
case, TEBD method is adopted to investigate the expansion dynam-
ics. We get a similar result as 2D. And in both cases, the highest 
expansion rate occurs in the non-interacting limit, where the cloud 
expands ballistically.

The rest of this paper is organized as follows. In the first part of 
Section 2, we introduce the calculation method DBdG and briefly 
discuss its relation with other methods dealing with dynamic pro-
cesses. In the second part of Section 2, the non-equilibrium pro-
cesses of expansion in 2D optical lattice are investigated by DBdG 
method. In Section 3, we adopt TEBD to investigate the expansion 
dynamics for 1D gas in optical lattice. Finally, we draw some con-
clusion and discuss our results and recent experimental results.

2. 2D case

2.1. Model and DBdG method

We consider two components of Fermi gases trapped in 2D 
deep optical lattice. It is appropriate to describe this system by 
a single-band Hamiltonian. The total Hamiltonian can be described 
as follows:

H(t) = − J
∑

σ 〈i,i′〉
(c†

iσ ci′σ + h.c.) + g
∑

i

c†
i↑c†

i↓ci↓ci↑

+
∑
iσ

(V trap(i, t) − μσ )c†
iσ ciσ (1)
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ciσ (c†
iσ ) is the creation (annihilation) operator of Fermi atoms 

with spin σ at site i in 2D optical lattice. Here, we do not con-
sider the situation of imbalanced fermions, so the chemical po-
tential μ↑ = μ↓ = μ. J is the amplitude of the hopping, and g
is the on-site interaction strength. V trap(i, t) describes the time-
dependent trap potential of site i. Since we are interested in the 
weak attractive interacting system, it is proper to use mean field 
approximation and the origin Hamiltonian changes to:

HBCS(t) = − J
∑

σ 〈i,i′〉
(c†

iσ ci′σ + h.c.) +
∑

i

(�i(t)c†
i↑c†

i↓

+ �
†
i (t)ci↓ci↑) +

∑
iσ

(V trap(i, t) − μσ )c†
iσ ciσ (2)

Here, �i(t) = −g
〈
ci↓ci↑

〉
, is the pairing parameter for BCS state at 

time t . We describe the dynamic process in the Heisenberg pic-
ture, which means the state is not changed while the operator is 
evolving under the mean field Hamiltonian. The total procedure of 
our calculation can be summarized as the following: for t = 0, the 
waves function of ground state and all the correlation functions 
such as 

〈
ψ0

∣∣c†
iσ ci′σ ′

∣∣ψ0
〉

can be derived by Real Space Bogoliubov–
de Gennes (RBdG) method [29–31]; when t > 0, since the super-
fluid order parameter �i(t) in the Hamiltonian is time dependent, 
we should replace it by the new result step by step during the 
evolution process. And the chemical potential μ is updated by 
the fixed particle number condition. Meanwhile, the single-particle 
correlation function for the new time point can be evolved by the 
Hamiltonian of the previous step.

There is another approach to the dynamics of BCS state, the 
time-dependent Ginzburg–Landau equation [32], which describes 
the evolution of BCS order. However, it is suitable close to the tran-
sition temperature. Since we are interested in non-equilibrium dy-
namics with quench trap potential at zero temperature, we adopt 
the method introduced above to deal with the problem. It should 
be pointed out that, the starting point of this method is the same 
with the former works in the k-space [22–28], since the mean 
field approximation is employed in all the calculation. However, 
we adopt the calculation in the real space due to our interest 
here.

2.2. Dynamics of expansion process

We perform our calculation based on the recent experimental 
setup. The expansion process is after the sudden movement of the 
harmonic trap at t = 0+ [19]:

V trap(i, t) = V 0(xi − x0)
2�(−t) (3)

Here, x0 is the coordinate of the trap center. V 0 is the strength of 
the external harmonic trap. At t = 0, the system is at the ground 
state (GS) in the trap. For large trap depth V 0 = 1.5, atoms in the 
trap center is in band insulate state, initially. When the trap is 
removed at t = 0+ , the atoms confined initially are allowed to ex-
pand freely in the optical lattice. The expansion processes with and 
without interaction are both studied in our calculation. The den-
sity distribution at different time during the expansion process is 
shown in Fig. 1. For the situation with (without) attractive interac-
tion, as shown in the right (left) column in Fig. 1, we can see the 
density profile has been affected by the shape of lattice during the 
free expansion no matter whether the interaction exists.

Furthermore, we show the distribution of BCS pairing order 
�(x, t) in the dynamic process in Fig. 2. As we have mentioned 
above, the majority of the atoms are in the band insulating state, 
initially. Thus only the fermions in the edge can exhibit coherent 
pairing. When the trap is removed at t > 0, free expansion destroys 

Fig. 1. Distribution of density at different time during expansion for noninteracting 
fermions (left column) and attractive fermions (right column, interaction parameter 
g = −2) with initial trap depth ration V 0 = 1.5 and fixed particle number N = 26. 
The rows display the density for t = 0, t = 1, and t = 2, from top to the bottom 
respectively. And the time unit is h̄/ J .

band insulate state and enhances the coherence. It leads to two ef-
fects on superfluid order. On one hand, �(x) expands towards the 
trap center gradually as a result of melting. On the other hand, 
with the diffusion of particle density, the peak value of pairing pa-
rameter descends.

In order to describe the expansion process, we adopt the con-
cepts of cloud radius and mean expansion rate, which have been 
defined in [19]:

R(t) =
√

R2
0 + v2

expt2 (4)

R0 and R(t) are radius of the cloud at initial and at real-time, 
respectively, which satisfy R2

0 = 1
N

∑
i ni(0)(i − i0)

2 and R2
t =

1
N

∑
i ni(t)(i − i0)

2. And the deconvolved cloud size which gets rid 

of the initial cloud size satisfies Rt =
√

R2
t − R2

0. Here, N is the to-

tal particle number, and i0 is the coordinate of the trap center. 
The lattice parameter a is set as 1 in the above equations. Total 
cloud size and deconvolved size are obtained from the above equa-
tions, shown in Fig. 3. For non-interacting expansion, the process 
is ballistic expansion. We find the expansion rate is linear with the 
hopping amplitude J , which is accordant with the result of exper-
iment measurement, as shown in the insert in Fig. 3. It is simple 
to explain this result. Due to the band insulate state, the atom 
is localized completely while all the moment k-states are popu-
lated. A mean squared velocity v2

exp = 〈v2
q〉. vq = 1

h̄
∂ E
∂q . After simple 

calculation, we can get the result vexp = 2 J
h̄ . Furthermore, the de-

convolved cloud size shows a linear relation with the expansion 
time for the ballistic expansion, while the total cloud size shows 
a parabolic curve vs expansion time. If attractive interaction is in-
troduced, the deconvolved cloud size vs time t deviates from the 
linear relation. And the cloud size of the interacting case is smaller 
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