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We study the effect of a hidden gauge symmetry on complex holomorphic systems. For this purpose, 
we show that intrinsically any holomorphic system has this gauge symmetry. We establish that this 
symmetry is related to the Cauchy–Riemann equations, in the sense that the associated constraint is 
a first class constraint only in the case that the potential be holomorphic. As a consequence of this 
gauge symmetry on the complex space, we can fix the gauge condition in several ways and project from 
the complex phase-space to real phase space. Different projections are gauge related on the complex 
phase-space but are not directly related on the real physical phase-space.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In several instances, in physics it is natural to select complex 
variables to develop a theory. For example, in Conformal Field The-
ory in two dimensions the conformal transformations of the metric 
are equivalent to the Cauchy–Riemann equations for holomorphic 
functions. In this paper, we consider a generalization of this con-
cept, in the sense that, we regard a system defined in the complex 
space and we show that this system possesses a gauge symmetry. 
This symmetry is trivial when is analyzed directly in the context of 
the complex variables z = x + iy, because it says directly that the 
transformation is null δz = 0, then all the holomorphic functions 
are invariant under these transformations. However, these transfor-
mations are not trivial if we consider that the real and imaginary 
parts of z are allowed to transform on the complex plane. We show 
that these transformations are gauge transformations generated 
by a first class constraint in the context of the Dirac’s canonical 
method. Then by selecting a gauge condition we can map our com-
plex system to different real systems. The interesting point is that 
these systems are related by a gauge transformation on the com-
plex phase-space.

In Quantum Mechanics one of the fundamental postulates is 
that every measurable physical quantity A is described by an op-
erator A acting on the state space; and this operator is an ob-
servable. A common hypothesis is to select Hermitian operators, in 
order to obtain measurable or observable quantities. This postulate 
implies that if we want to get all the information of the system, we 
must consider a complete set of commuting observables. Moreover, 
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it has been hypothesized that some systems do not necessarily 
satisfy this postulate. Examples of these cases are: non-Hermitian 
models [1,2], with interesting applications as to generate entan-
glement in many-body systems [3]; the PT-symmetry [4,5], with 
striking applications in optics [6,7]. Also, we have theories with 
high order time derivatives as the Pais–Uhlenbeck model for parti-
cles [8–10] and Bernard–Duncan model for fields [11], noncommu-
tative theories [12,13], higher order derivative theories of gravity 
[14,15] and complex theories of gravity [16].

There are several ways to address these models, for example 
when the Hermiticity is not available, it is natural to introduce a 
new kind of symmetry and in this way, the notion of PT-symmetry 
was introduced by Bender [4]. Furthermore, Ashtekar introduced a 
modification of the internal product, using the reality conditions, 
and this procedure also solves the problem in some cases [16]. 
Our approach is a generalization of the Ashtekar procedure, but 
written in a different way. Some years ago was shown that the re-
ality conditions can be interpreted as second class constraints in 
the context of the Dirac’s method of canonical quantization [17], 
and then the internal product is given in terms of the measure of 
the path integral with second class constraints. The object of this 
paper is to explore further this idea. We find that in any holomor-
phic theory there is intrinsically a gauge symmetry and the second 
class constraints of the Ashtekar formalism correspond to a selec-
tion of the gauge condition of the symmetry. However, there are 
many additional consistent gauge conditions. By selecting a gauge 
condition we get a different real physical system that is gauge re-
lated to another real system by a complex gauge transformation to 
be performed on the extended complex phase-space. In this form, 
we will show that using this gauge symmetry we can relate on the 
complex phase-space different real systems that are not related by 
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a canonical transformation on the real phase-space. The work is 
organized as follows. In Section 2, we introduce the gauge symme-
try and we show that is related to the Cauchy–Riemann equations. 
In Section 3 starting from the complex harmonic oscillator, and 
by using different gauges we obtain in the real physical space the 
potentials k/2x2, ax−1, bx−2 and −ax−1. In Section 4 we gener-
alize our construction to the two-dimensional complex space and 
we show that the harmonic oscillator and the Kepler problem are 
gauge related. In Section 5 we quantize the system using path in-
tegrals. Section 6 is devoted to our conclusions.

2. Complex theory for a first order theory

Let us consider a complex Lagrangian that is a function of the 
holomorphic coordinate z = x + iy and their velocities

L(z, ż) = 1

2
ż2 − V (z) (1)

and we are assuming that the potential V (z) is a holomorphic 
function of z, that is,

dV

dz̄
= 0 (2)

Then, it is evident that the Lagrangian is invariant under the trans-
formations

x′ = x + λ(t), y′ = y + iλ(t). (3)

That leave z invariant, i.e. δz = 0. In consequence, from this point 
of view our system have a trivial symmetry. On the other hand, 
this symmetry is more useful if we decompose z in terms of real 
and imaginary parts. In this case, the Lagrangian is given by

L(z, ż) = 1

2
ẋ2 − 1

2
ẏ2 + iẋ ẏ − V R(x, y) − iV I (x, y). (4)

The associated equations of motion of the above Lagrangian are 
not independent, since it is possible to divide them in real and 
imaginary parts and we get

ẍ + ∂V R(x, y)

∂x
= 0, ÿ − ∂V R(x, y)

∂ y
= 0, (5)

where it is clear that x and y are real quantities. Now, we pro-
ceed to develop the canonical formulation of this theory using the 
variables x and y. We select these variables, because in terms of 
holomorphic coordinates z, our symmetry is trivial in the sense 
we cannot establish, any relation between the holomorphic and 
anti-holomorphic coordinates. The canonical momenta for the La-
grangian (1), are

px := ∂L

∂ ẋ
= ẋ + i ẏ, p y := ∂L

∂ ẏ
= − ẏ + iẋ. (6)

Using these definitions, we obtain the primary constraint

� = 2pz̄ = px + ip y ≈ 0, (7)

where we introduce the weak equality symbol “≈” to emphasize 
that the quantity � is numerically restricted to be zero but does 
not identically vanish throughout phase space [18]. Following the 
usual definition of the canonical Hamiltonian in the phase-space

H = ẋpx + ẏp y − L, (8)

we observe that H, L, px, p y are complex quantities. Through the 
definition (8) we obtain the explicit total Hamiltonian

HT = p2
z

2
+ V (z) + μ�

= 1

2
p2

x + V R(x, y) + iV I (x, y) + μ�, (9)

where we add the primary constraint following the Dirac’s method 
[19]. The resulting equations of motion are

ẋ = {x, HT } = px + μ, ẏ = {y, HT } = p y + iμ, (10)

ṗx = {px, HT } = −∂V

∂x
, ṗ y = {p y, HT } = −∂V

∂ y
. (11)

Using equations (10) we observe that there is a gauge freedom 
since we have an arbitrary Lagrange multiplier. It is important to 
note that the temporal evolution is not necessarily a real quan-
tity, so our real variables x and y under evolution could obtain an 
imaginary contribution.

In the following, we are going to evolve the primary constraint 
(7) and in this way we should understand what kind of constraint 
is, first or second class. The primary constraint � evolves as

�̇ = {�, H} = −2
dV (z)

dz̄
≈ 0. (12)

In the present case, we observe that the temporal evolution of �
imposes as a result the Cauchy–Riemann equations for V (x, y) (see 
Eq. (2)). In consequence if V (x, y) holomorphic function we obtain 
that � is first class constraint. Furthermore, there are no additional 
constraints and we will get as a result that our reduced phase-
space has therefore two degrees of freedom. In the other hand, 
following the Dirac’s quantization method the physical states are 
defined by imposing that the action of the first class constraint 
over the states is equal to zero. In the coordinate representation 
this we will imply(

−ih̄
∂

∂x
+ h̄

∂

∂ y

)
[G R(x, y) + iG I (x, y)] = 0, (13)

resulting the Cauchy–Riemann equations, if we decompose in real 
and imaginary parts. In this way, the Cauchy–Riemann equations 
appear in this formalism as an invariance under translations gen-
erated by the constraint. In other words, we obtain that our theory 
is compatible with the Dirac’s formulation [19,18], but it must sat-
isfy that the potential is a holomorphic function

�̂V (x, y) = 0. (14)

Now, following the Dirac’s conjecture this constraint will be the 
generator of gauge transformation [19]. The transformations pro-
duced by the first class constraint are

δx = {x, ε�} = ε, δy = {y, ε�} = iε, (15)

δpx = {px, ε�} = 0, δp y = {p y, ε�} = 0. (16)

In consequence, we get

δz = {z,�} = 0, (17)

in agreement with the transformations (3). From a pragmatic point 
of view z and pz are Dirac’s observables with null variation, but 
it implies a more complicated structure if we take in account the 
variation of the real and imaginary part of z. In this framework and 
if we pay attention to the equations (10), it is necessary to impose 
a gauge condition in order to obtain a real reduced phase-space. 
Then according to the gauge condition that we choose we can ob-
tain a different real theory. The interesting point is that all these 
real theories are connected by a complex gauge transformation in 
the original extended phase-space. In fact, the equations of motion 
that we get from the Hamiltonian formulation are complex quan-
tities obtained for the real and imaginary parts. Furthermore, the 
phase-space is wider than the configuration space since μ exists 
in this formulation, and it is possible to choose as a real quantity 
either δx or δy. For the purpose of applying a method that is not 
trivial using this mathematical structure, we must propose a gauge 



Download English Version:

https://daneshyari.com/en/article/1866744

Download Persian Version:

https://daneshyari.com/article/1866744

Daneshyari.com

https://daneshyari.com/en/article/1866744
https://daneshyari.com/article/1866744
https://daneshyari.com

