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We introduce an arrival time operator which is self-adjoint and, unlike previously proposed arrival 
time operators, has a close link to simple measurement models. Its spectrum leads to an arrival time 
distribution which is a variant of the Kijowski distribution (a re-ordering of the current) in the large 
momentum regime but is proportional to the kinetic energy density in the small momentum regime, 
in agreement with measurement models. A brief derivation of the latter distribution is given. We make 
some simple observations about the physical reasons for self-adjointness, or its absence, in both arrival 
time operators and the momentum operator on the half-line and we also compare our operator with the 
dwell time operator.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The arrival time problem in quantum mechanics is the question 
of determining the probability that an incoming wave packet, for 
a free particle, arrives at the origin in a given time interval [1–5]. 
Classically, for a particle with initial position x and momentum p, 
the arrival time is given by the quantity

τ = −mx

p
. (1)

The quantum problem is most simply solved using the spectrum 
of an operator corresponding to this quantity, such as that first 
studied by Aharonov and Bohm [6],

T̂AB = −m

2

(
x̂

1

p̂
+ 1

p̂
x̂

)
. (2)

A heuristic result due to Pauli [7] (significantly updated by Galapon 
[8,9]) indicates that an object such as this, which is conjugate 
to a Hamiltonian with a semi-bounded spectrum, cannot be self-
adjoint. Indeed we find that its eigenstates, which in the momen-
tum representation (with x̂ → ih̄∂/∂ p) are given by

φτ (p) =
( |p|

2πmh̄

) 1
2

ei p2

2mh̄ τ , (3)

are complete but not orthogonal. There is a POVM associated with 
these states [10] from which an arrival time distribution can be 
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constructed and it coincides with that postulated by Kijowski [11], 
namely

�K (τ ) = |〈ψ |φτ 〉|2

= 1

m
〈ψτ ||p̂| 1

2 δ(x̂)|p̂| 1
2 |ψτ 〉 (4)

(where �(τ)dτ is the probability of arriving at the origin between 
τ and τ +dτ ), for which there is some experimental evidence [12]. 
This is related by a simple operator re-ordering to the quantum–
mechanical current at the origin, 〈 Ĵ (t)〉, the result expected on 
classical grounds, where the current operator is given by

Ĵ (t) = 1

2m

(
p̂δ(x̂(t)) + δ(x̂(t))p̂

)
, (5)

with x̂(t) = x̂ + p̂t/m. This picture, the standard one, is nicely sum-
marized in Ref. [13] and some developments of it and explorations 
of the underlying mathematics are described in Refs. [8,9,14,15].

The purpose of the present paper is to make two contributions 
to the standard picture presented above. The first is to discuss 
three simple self-adjoint modifications of the Aharonov–Bohm op-
erator, discuss the relationship with the momentum operator on 
the half-line, and identify the underlying physically intuitive rea-
sons why some of these operators are self-adjoint and some not. 
The second and main result is to present a new self-adjoint arrival 
time operator which has a much closer link to models of measure-
ment than any previously studied operators.
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2. Self-adjoint arrival time operators

The lack of self-adjointness of Eq. (2) is not necessarily a prob-
lem but nevertheless a number of efforts have been made to 
restore it. Here, we take a simple approach and note that self-
adjointness may be achieved by a number of simple modifications 
of the states Eq. (3). The states

φτ (p) =
( |p|

2πmh̄

) 1
2

eiε(p)
p2

2mh̄ τ , (6)

where ε(p) is the sign function, are orthogonal and complete and 
so are eigenstates of a self-adjoint operator. This operator, first 
considered by Kijowski [11] and subsequently explored at length 
by Delgado and Muga [16], may be written

T̂KDM = −m

2

(
x̂

1

|p̂| + 1

|p̂| x̂

)
, (7)

and is a quantization of the classical expression −mx/|p|. It is also 
usefully written in the representation using the pseudo-energy, 
ξ = p|p|/2m, where we have

T̂KDM = −ih̄
∂

∂ξ
(8)

(which acts on states �(ξ) = (m/p)
1
2 φ(p)), and is self-adjoint 

since ξ takes an infinite range. This is in contrast to the Aharonov–
Bohm operator which, in the energy representation, has the form

T̂AB =
(

−ih̄
∂

∂ E

)
⊕

(
−ih̄

∂

∂ E

)
(9)

where the two parts of the direct sum refer to the positive and 
negative momentum sectors. Its lack of self-adjointness is due 
to the fact that E > 0, as is frequently noted. (See for example, 
Ref. [17].)

A second modification of the Aharonov–Bohm operator is to su-
perpose opposite values of τ in Eq. (3) and then note that the 
subsequent states, which are proportional to |p| 1

2 sin(p2τ/2mh̄)

are orthogonal and are the eigenstates of the self-adjoint opera-
tor

T̂MI =
√

T̂ 2
AB, (10)

considered by de la Madrid and Isidro [18]. This is a quantization 
of m|x|/|p|. A third modification is to note that the orthogonal-

ity of the states |p| 1
2 sin(p2τ/2mh̄) is not affected by restriction to 

positive or negative momenta so we may consider these two sec-
tors separately and as a consequence the operator

T̂3 = θ(p̂)T̂MIθ(p̂) − θ(−p̂)T̂MIθ(−p̂), (11)

is self-adjoint. This operator, which does not seem to have been 
noted previously, is a quantization of the classical expression 
m|x|/p.

These three examples all side-step the Pauli theorem since they 
do not have canonical commutation with the Hamiltonian. Fur-
thermore, they all give probability distributions which are simple 
variants on the Kijowski distribution, the expected result, as is eas-
ily deduced from their eigenstates.

From these three examples we make the following sim-
ple observation. The Aharonov–Bohm operator arises from the 
quantization of the classical expression −mx/p and is not self-
adjoint. However, quantizing any of the three classical expres-
sions −mx/|p|, m|x|/|p| or m|x|/p leads to a self-adjoint operator. 
Hence, self-adjoint modifications of the Aharonov–Bohm operator 
are easily obtained by relinquishing just one or two bits of in-
formation, namely the sign of x, or p, or the signs of both. The 

relinquished information is essentially the specification of whether 
the particle is incoming (x and p with opposite signs) or outgoing 
(x and p with the same sign). Of course in practice we are usu-
ally interested in the arrival time for a given state, for which this 
information is already known, at least semiclassically, so from this 
point of view the difference between the Aharonov–Bohm operator 
and its self-adjoint variants may not be important. Nevertheless it 
is of interest to uncover the underlying origins of self-adjointness 
or its absence and the above properties give some useful clues.

Physically speaking, self-adjointness or its absence are about 
precision. A self-adjoint operator has orthonormal eigenstates and 
an associated projection operator onto a range of its spectrum. Pro-
jections onto different ranges have zero overlap. An operator that 
is not self-adjoint has non-orthogonal eigenstates and has at best 
a POVM onto a range of its spectrum. Two POVMs localizing onto 
different ranges will have a small overlap which means there is 
intrinsic imprecision in the specification the ranges they localize 
onto. To understand the origin of the lack of self-adjointness in 
the Aharonov–Bohm operator we would like to find a physically 
intuitive understanding of where this imprecision comes from.

3. The momentum operator on the half-line

To understand the above issue, we turn to the frequently-
studied situation of the momentum operator on the half-line x > 0
[19–21]. There, the momentum operator cannot be made self-
adjoint since it generates translations into negative x. However, p̂2

can be made self-adjoint, with suitable boundary conditions, and 
therefore, by the spectral theorem, |p̂| can be made self-adjoint. 
Hence just by relinquishing information about the sign of p̂ a self-
adjoint operator is obtained. The obstruction to self-adjointness on 
the half-line therefore lies in the sign function of p̂. Differently put, 
the problem is that the operator θ(x̂)θ(p̂)θ(x̂) cannot be made self-
adjoint. For similar reasons, we also note that the position operator 
on the positive momentum sector cannot be self-adjoint. A POVM 
for the momentum operator on the half-line may be constructed, 
but this is not directly relevant to what we do here [21].

We propose that there is a simple physical way of under-
standing the underlying imprecision linked to this lack of self-
adjointness. Suppose we tried to measure the momentum. Let us 
therefore consider a simple measurement model of momentum 
on the half-line x > 0 using sequential position measurements, 
from which information about momentum can be deduced. Sim-
ilar approaches to calculating the time-of-flight momentum have 
been given elsewhere [22] and we make use of these results, but 
adapted to the case of propagation in the region x > 0. We sup-
pose we have an initial incoming state ψ at time t0 consisting 
of a spatially very broad gaussian, close to a plane wave, of mo-
mentum p0 < 0 and we ask if it passes through a spatial region 
[x̄1 − 
, ̄x1 + 
] in x > 0 at time t1 and at a later time t2 through 
a spatial region [x̄2 − 
, ̄x2 + 
]. The probability for these two 
measured results is

p(x̄1, t1, x̄2, t2)

= 〈ψ |g†(t1, t0)P x̄1 g†(t2, t1)P x̄2 g(t2, t1)P x̄1 g(t1, t0)|ψ〉 (12)

where

P x̄ =
x̄+
∫

x̄−


dx|x〉〈x| (13)

is a projector onto the range [x̄ − 
, ̄x + 
] and g(t1, t0) denotes 
the propagator in the region x > 0. The precise form of the prop-
agator depends on the boundary conditions on the states imposed 
at x = 0. There is a one-parameter family that leads to a self-
adjoint Hamiltonian, of the form
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