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We introduce an arrival time operator which is self-adjoint and, unlike previously proposed arrival
time operators, has a close link to simple measurement models. Its spectrum leads to an arrival time
distribution which is a variant of the Kijowski distribution (a re-ordering of the current) in the large
momentum regime but is proportional to the kinetic energy density in the small momentum regime,
in agreement with measurement models. A brief derivation of the latter distribution is given. We make

some simple observations about the physical reasons for self-adjointness, or its absence, in both arrival
time operators and the momentum operator on the half-line and we also compare our operator with the

dwell time operator.
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1. Introduction

The arrival time problem in quantum mechanics is the question
of determining the probability that an incoming wave packet, for
a free particle, arrives at the origin in a given time interval [1-5].
Classically, for a particle with initial position x and momentum p,
the arrival time is given by the quantity
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The quantum problem is most simply solved using the spectrum

of an operator corresponding to this quantity, such as that first

studied by Aharonov and Bohm [6],
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A heuristic result due to Pauli [7] (significantly updated by Galapon

[8,9]) indicates that an object such as this, which is conjugate

to a Hamiltonian with a semi-bounded spectrum, cannot be self-

adjoint. Indeed we find that its eigenstates, which in the momen-
tum representation (with X — iho/dp) are given by
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are complete but not orthogonal. There is a POVM associated with
these states [10] from which an arrival time distribution can be
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constructed and it coincides with that postulated by Kijowski [11],
namely
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(where TI(t)dt is the probability of arriving at the origin between
T and t +dt), for which there is some experimental evidence [12].
This is related by a simple operator re-ordering to the quantum-
mechanical current at the origin, (J(t)), the result expected on
classical grounds, where the current operator is given by
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with X(t) = X+ pt/m. This picture, the standard one, is nicely sum-
marized in Ref. [13] and some developments of it and explorations
of the underlying mathematics are described in Refs. [8,9,14,15].

The purpose of the present paper is to make two contributions
to the standard picture presented above. The first is to discuss
three simple self-adjoint modifications of the Aharonov-Bohm op-
erator, discuss the relationship with the momentum operator on
the half-line, and identify the underlying physically intuitive rea-
sons why some of these operators are self-adjoint and some not.
The second and main result is to present a new self-adjoint arrival
time operator which has a much closer link to models of measure-
ment than any previously studied operators.
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2. Self-adjoint arrival time operators

The lack of self-adjointness of Eq. (2) is not necessarily a prob-
lem but nevertheless a number of efforts have been made to
restore it. Here, we take a simple approach and note that self-
adjointness may be achieved by a number of simple modifications
of the states Eq. (3). The states
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where €(p) is the sign function, are orthogonal and complete and
so are eigenstates of a self-adjoint operator. This operator, first
considered by Kijowski [11] and subsequently explored at length
by Delgado and Muga [16], may be written
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and is a quantization of the classical expression —mx/|p|. It is also

usefully written in the representation using the pseudo-energy,

& = p|p|/2m, where we have
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(which acts on states ®(&) = (m/p)%qb(p)), and is self-adjoint
since £ takes an infinite range. This is in contrast to the Aharonov-
Bohm operator which, in the energy representation, has the form

Tag = (—ih%) ® <—iha%> 9)

where the two parts of the direct sum refer to the positive and
negative momentum sectors. Its lack of self-adjointness is due
to the fact that E > 0, as is frequently noted. (See for example,
Ref. [17].)

A second modification of the Aharonov-Bohm operator is to su-
perpose opposite values of T in Eq. (3) and then note that the

subsequent states, which are proportional to |p|% sin(p%t/2mh)
are orthogonal and are the eigenstates of the self-adjoint opera-
tor

T =/ T, (10)

considered by de la Madrid and Isidro [18]. This is a quantization
of m|x|/|p|. A third modification is to note that the orthogonal-

. 1. . -
ity of the states |p|Z sin(p?t/2mh) is not affected by restriction to
positive or negative momenta so we may consider these two sec-
tors separately and as a consequence the operator

T3 =60(P) Tmi6 (B) — 6(— D) Twif (—P), (11)

is self-adjoint. This operator, which does not seem to have been
noted previously, is a quantization of the classical expression
mlx|/p.

These three examples all side-step the Pauli theorem since they
do not have canonical commutation with the Hamiltonian. Fur-
thermore, they all give probability distributions which are simple
variants on the Kijowski distribution, the expected result, as is eas-
ily deduced from their eigenstates.

From these three examples we make the following sim-
ple observation. The Aharonov-Bohm operator arises from the
quantization of the classical expression —mx/p and is not self-
adjoint. However, quantizing any of the three classical expres-
sions —mx/|p|, m|x|/|p| or m|x|/p leads to a self-adjoint operator.
Hence, self-adjoint modifications of the Aharonov-Bohm operator
are easily obtained by relinquishing just one or two bits of in-
formation, namely the sign of x, or p, or the signs of both. The

relinquished information is essentially the specification of whether
the particle is incoming (x and p with opposite signs) or outgoing
(x and p with the same sign). Of course in practice we are usu-
ally interested in the arrival time for a given state, for which this
information is already known, at least semiclassically, so from this
point of view the difference between the Aharonov-Bohm operator
and its self-adjoint variants may not be important. Nevertheless it
is of interest to uncover the underlying origins of self-adjointness
or its absence and the above properties give some useful clues.
Physically speaking, self-adjointness or its absence are about
precision. A self-adjoint operator has orthonormal eigenstates and
an associated projection operator onto a range of its spectrum. Pro-
jections onto different ranges have zero overlap. An operator that
is not self-adjoint has non-orthogonal eigenstates and has at best
a POVM onto a range of its spectrum. Two POVMs localizing onto
different ranges will have a small overlap which means there is
intrinsic imprecision in the specification the ranges they localize
onto. To understand the origin of the lack of self-adjointness in
the Aharonov-Bohm operator we would like to find a physically
intuitive understanding of where this imprecision comes from.

3. The momentum operator on the half-line

To understand the above issue, we turn to the frequently-
studied situation of the momentum operator on the half-line x > 0
[19-21]. There, the momentum operator cannot be made self-
adjoint since it generates translations into negative x. However, p?
can be made self-adjoint, with suitable boundary conditions, and
therefore, by the spectral theorem, |p| can be made self-adjoint.
Hence just by relinquishing information about the sign of p a self-
adjoint operator is obtained. The obstruction to self-adjointness on
the half-line therefore lies in the sign function of p. Differently put,
the problem is that the operator 6 (X)0(p)#(X) cannot be made self-
adjoint. For similar reasons, we also note that the position operator
on the positive momentum sector cannot be self-adjoint. A POVM
for the momentum operator on the half-line may be constructed,
but this is not directly relevant to what we do here [21].

We propose that there is a simple physical way of under-
standing the underlying imprecision linked to this lack of self-
adjointness. Suppose we tried to measure the momentum. Let us
therefore consider a simple measurement model of momentum
on the half-line x > 0 using sequential position measurements,
from which information about momentum can be deduced. Sim-
ilar approaches to calculating the time-of-flight momentum have
been given elsewhere [22]| and we make use of these results, but
adapted to the case of propagation in the region x > 0. We sup-
pose we have an initial incoming state v at time tp consisting
of a spatially very broad gaussian, close to a plane wave, of mo-
mentum po < 0 and we ask if it passes through a spatial region
[X1 — A,X1 + A] in x > 0 at time t; and at a later time t; through
a spatial region [x; — A, Xy + A]. The probability for these two
measured results is

p(x1,t1,%2,t2)
= (Ylg'(t1,to) Px, &' (t2, t1) Pz, g(t2, t1) Py, g(t1, to)[¥)  (12)

where

Pe= [ o (13)
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is a projector onto the range [x — A,X + A] and g(tq,tg) denotes

the propagator in the region x > 0. The precise form of the prop-

agator depends on the boundary conditions on the states imposed

at x = 0. There is a one-parameter family that leads to a self-

adjoint Hamiltonian, of the form
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