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The effect of q-deformation of the bosonic algebra on the Mott-superfluid transition for interacting lattice 
bosons described by the Bose–Hubbard model is studied using mean-filed theory. It has been shown that 
the Mott state proliferates and the initial periodicity of the Mott lobes as a function of the chemical 
potential disappears as the q-deformation increases. The ground state phase diagram as a function 
of the q-parameter exhibits superfluid order, which intervenes in narrow regions between Mott lobes, 
demonstrating the new concept of statistically induced quantum phase transition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The phenomenon of spontaneously broken symmetry is one of 
the most fascinating and fundamental problem relevant for solids, 
ultra-cold atoms, and relativistic physics. The experimental discov-
ery of Bose–Einstein condensation (BEC) has opened up the study 
of quantum phenomena in the context phase transition in the in 
a qualitatively new regime [1,2]. The research on ultra-cold mat-
ter was further accelerated by successful experiments on BECs in 
optical lattices [3], which are created by periodic Stark shift poten-
tials resulting from the interference of two or more laser beams. 
Interestingly, due to its universality, BEC in optical lattices may be 
employed for simulation of many-body quantum physics which is 
common in condensed matter physics. Advances in the technol-
ogy of engineering many-body systems with cold atoms trapped 
in optical lattices allow for building quantum simulators, i.e., sys-
tems with model quantum Hamiltonians, where types of interac-
tions can be customized and their strengths tuned. In particular, 
cold atoms in optical lattices realize Hubbard dynamics for both 
bosonic and fermionic particles, where the single particle and in-
teraction terms can be engineered by external fields. Especially, 
there has been a lot of interest in the possibility of building quan-
tum simulators for lattice gauge theory (LGT) using optical lattices 
[4–6]. The purpose is to experimentally engineer many-body sys-
tems with cold atoms that approximately evolve according to some 
given quantum LGT Hamiltonian. In the context of condensed mat-
ter, a proof that quantum simulating is possible has been given 
in the case of the Bose–Hubbard (BH) model [7], where an im-
pressive level of quantitative agreement has been reached between 
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theoretical calculations and their experimental optical lattice im-
plementations.

From another perspective superfluid–insulator transition rests 
on spin-statistics theorem which represents one of the fundamen-
tal principles of physics establishing a connection between quan-
tum mechanics of many-body systems. In the recent years there 
has been increasing emphasis in quantum statistics different from 
the standard bosons and fermions [8]. One interesting realiza-
tion of this approach is to study of statistical by employing the 
q-deformed algebra of creation and annihilation operators, usu-
ally called q-bosons [9,10]. The theory of q-deformed bosons is 
related to the general theory of quantum groups and originated 
from the study on exactly solvable statistical systems, which led
to the q-deformed algebra of creation and annihilation operators 
[11,12]. In this context the deformation parameter q can be con-
sidered as an effective quantity which encapsulates most features 
of non-trivial dynamics of the system under study.

In a recent studies of the bosonic optical lattice system 
an experimental setup was proposed to create anyons in one-
dimensional lattices with fully tunable exchange statistics [13]. 
Here, anyons were created by bosons with occupation-dependent 
hopping amplitudes, which can be realized by assisted Raman tun-
neling. The system is described as a variant of the Bose–Hubbard 
model where the bosonic hopping amplitudes are state-dependent
with the conditional-hopping phase factor that breaks reflection 
parity in the system which is an important ingredient of fractional 
statistics. This opens possibility of smoothly transmuting bosons 
via anyons into fermions since the particles operators at lattice 
sites k, j obey the deformed commutation relation

âkâ†
j − qkjâ

†
jâk = δkj (1)

with the deformation parameter qkj = eiθsgn(k− j) . The sign function 
is such that sgn(k − j) = 0 for j = k. The statistical angle θ can be 
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controlled by modifying the relative phase of external driving fields 
via assisted Raman tunneling which can selectively address hop-
ping processes connecting different occupational states and induce 
a relative phase, realizing a fully tunable deformation parameter q
[13]. The case q = 1 corresponds to ordinary bosons, however for 
θ = π they behave as pseudo-fermions: while being bosons on-
site, they are fermions off-site. Thus by changing the deformation 
parameter q one can demonstrate the new concept of statistically 
induced quantum phase transition.

The aim of this paper is to provide further step towards a theo-
retical understanding of the properties of interacting bosons under 
the q deformation of the fundamental Bose–Einstein algebra. While 
the statistical properties of q-deformed non-interacting bosonic 
particles have been examined to some extent [14–17] the physics 
of interacting deformed counterparts remain elusive. To this end, 
we investigate the finite temperature phase diagram of strongly in-
teracting lattice q-bosons described by Bose–Hubbard model, with 
the aim to study the impact of the q deformation on the ground 
state and finite temperature properties of the system with special 
emphasis on the Mott-superfluid transition.

In order to handle system with strong local interactions the re-
solvent technique based on the contour integral representation of 
the partition function has been devised [18]. Subsequently, we de-
rive the Landau-type expansion for the free energy in terms of the 
superfluid order parameter and find the phase diagrams depicting 
the relationships between various physical quantities of interest.

2. The model

The Bose–Hubbard model [7], which incorporates strong cor-
relations of the many-body system and successfully captures the 
Mott transition, is utilized as a generic model for the many-body 
system in an optical lattice. In the BH model, the low-lying exci-
tations are described by the motion of a fundamental boson from 
a site to a neighboring site. To move a fundamental boson from a 
site to a neighboring lattice site costs energy U because of the re-
pulsive Coulomb force between the fundamental bosons. In second 
quantized form the BH Hamiltonian is given by

H =
∑

i

(V̂ i − μn̂i) − J
∑
{i j}

(â†
i â j + â†

jâi)

V̂ i = U

2
n̂i(n̂i − 1) (2)

with experimentally adjustable ratios between the hopping ampli-
tude J between pairs of lattice sites labeled by {i j} and the on-site 
interaction U . The chemical potential μ is added to fix the num-
ber of particles in the grand canonical ensemble. Here, âi is the 
bosonic field operator at i-th site of the lattice, n̂i = â†

i âi is the 
particle number operator for bosons. At integer filling factor, and 
zero temperature it describes a second-order quantum phase tran-
sition from superfluid (SF) to the Mott insulator (MI) phase as the 
interaction strength U is increased. In the Mott insulator phase, 
bosons are localized on the lattice sites due to the repulsive in-
teraction and they do not form a coherent state. In the coherent 
superfluid phase, bosons are delocalized and an long-range order 
exists. Furthermore, at finite temperature T , in addition to quan-
tum fluctuations one has to consider the thermal fluctuations with 
an energy scale of kT , with k being the Boltzmann constant, which 
can influence the properties of the many-body system.

3. q-deformation of Bose operators

In what follows, we shall exploit the q-Bose gas picture based 
on a concrete version of deformed bosons with the deformation 

parameter q. We employ the formulation which is symmetric un-
der q ←→ q−1 [9,10]. In terms of the q parameter an arbitrary 
real value can be considered. In this symmetric formulation one 
can further restrict it to 0 < q < 1 (or equivalently to 1 < q < ∞. 
A q-boson algebra is a set of elements called q-boson operators: 
â (annihilation), â† (creation) and N̂ (number), which satisfy the 
following commutation relations

[N̂ , â†]q = â†, [N̂ , â]q = −a

ââ† − qâ†â ≡ [â, â†]q = qN̂ . (3)

The first and second commutation relations are that for bosons, 
however, the third depends on the parameter q and only when 
q = 1 we recover the ordinary bosonic commutation rules. The ac-
tion of the deformed bosonic operators on the basis is given by the 
rules

â†|n〉 = √[n + 1]q|n + 1〉
â|n〉 = √[n]q|n − 1〉
N̂ |n〉 = n|n〉 (4)

which are similar to those of ordinary bosons, the only difference 
being the q-number given by

[x]q = (qx − q−x)/(q − q−1), (5)

which appears under the square roots instead of common numbers 
and satisfies the non-additivity property

[n + 1]q = q[n]q + q−n. (6)

The Fock space is constructed by allowing polynomials in the cre-
ation operator to act on the vacuum

|n〉 = (â†)n√[n]q!
|0〉 (7)

where the q-basic factorial is defined as

[n]q! = [n]q[n − 1]q[n − 2]q . . . [1]q. (8)

Finally, note that the number operator N̂ differs from n̂ operator, 
but the relation between them can be expressed as the nonlinear 
functional form n̂ = [N̂ ]q or equivalently

N̂ = 1

ln q
ln

[
n̂(q2 − 1) + √

4q2 + n̂2(q2 − 1)2

2q

]
(9)

Obviously, in the non-deformation limit q → 1, the q-basic number 
[x]q reduces to the ordinary number x and the relation n̂ ≡ N̂ is 
restored.

4. Mean-field theory

In this section, using the mean-field method we calculate the 
thermodynamic energy for BH Hamiltonian by applying pertur-
bation theory. For the problem under study, the superfluid state 
spontaneously breaks the U(1) symmetry of the model in Eq. (2)
as a result of the non-vanishing order parameter

� = 〈âi〉, (10)

where 〈. . .〉 denotes statistical average. Due to the gauge U(1) sym-
metry the parameter � can be considered as a real number. The 
mean-field method make use of the representation

âi = 〈âi〉 + δ̂i = � + δ̂i, (11)
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