Towards an exact solution for the three-dimensional Ising model: A method of the recurrence equations for partial contractions

Vitaly V. Kocharovsky ${ }^{\text {a,b,* }}$, Vladimir V. Kocharovsky ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Physics and Astronomy, Texas A\&M University, College Station, TX 77843-4242, USA
${ }^{\text {b }}$ Institute of Applied Physics, Russian Academy of Science, 603950 Nizhny Novgorod, Russia
${ }^{\text {c }}$ Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia

A R T I CLE I N F O

Article history:

Received 7 July 2015
Received in revised form 17 July 2015
Accepted 18 July 2015
Available online 22 July 2015
Communicated by V.M. Agranovich

Keywords:

Ising model
Critical phenomena
Phase transition
Mesoscopic system

Abstract

We find the exact solutions for the main steps in the analysis of the three-dimensional Ising model. A method is based on a recently found rigorous theory of magnetic phase transitions in a mesoscopic lattice of spins, described as the constrained spin bosons in a Holstein-Primakoff representation.

© 2015 Elsevier B.V. All rights reserved.

An exact solution of a famous three-dimensional (3D) Ising model (or any other nontrivial 3D model) of a phase transition was not found, despite almost a century of intensive effort. Only the 1 D [1] and 2D Ising models with zero [2] or non-zero [3] external field were solved (see [4,5] and references therein). That 3D problem remains one of the major unsolved problems in physics.

1. A rigorous theory of the constrained spin bosons in a Holstein-Primakoff representation

We start with a rigorous theory, that follows from a recently developed exact approach to the critical phenomena [6] and offers an exact solution for the 3D Ising model. Let us consider a cubic lattice of N interacting immovable spins $s=\frac{1}{2}$ with a period a in a box with volume $V=L^{3}$ and periodic boundary conditions. The lattice sites are enumerated by a position vector \mathbf{r}. A dimensionality of the lattice is arbitrary $d=1,2,3, \ldots$ According to a Holstein-Primakoff representation [7], worked out also by Schwinger [8], each spin is a system of two spin bosons, which are constrained to have a fixed total occupation $\hat{n}_{0 \mathbf{r}}+\hat{n}_{\mathbf{r}}=2 s$; $\hat{n}_{\mathbf{r}}=\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}}, \hat{n}_{0 \mathbf{r}}=\hat{a}_{0 \mathbf{r}}^{\dagger} \hat{a}_{0 \mathbf{r}}$. The $\hat{a}_{\mathbf{r}}$ and $\hat{a}_{0 \mathbf{r}}$ are the annihilation opera-

[^0]tors. A vector spin operator $\hat{\mathbf{S}}_{\mathbf{r}}$ at a site \mathbf{r} is given by its components as
$\hat{S}_{\mathbf{r}}^{x}=\frac{\hat{a}_{0 \mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}}+\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{0 \mathbf{r}}}{2}, \hat{S}_{\mathbf{r}}^{y}=\frac{\hat{a}_{0 \mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}}-\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{0 \mathbf{r}}}{2 i}, \hat{S}_{\mathbf{r}}^{z}=s-\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}}$.
By means of a many-body Hilbert space reduction [6], we can prove that this system is isomorphic to a system of N spinboson excitations, described by annihilation operators $\hat{\beta}_{\mathbf{r}}$ at each site \mathbf{r} and obeying the Bose canonical commutation relations $\left[\hat{\beta}_{\mathbf{r}}, \hat{\beta}_{\mathbf{r}^{\prime}}^{\dagger}\right]=\delta_{\mathbf{r}, \mathbf{r}^{\prime}}$, if we cutoff them by a step-function $\theta\left(2 s-\hat{n}_{\mathbf{r}}\right)$. This isomorphism is valid on an entire physically allowed Hilbert space and is achieved by equating the annihilation operators $\hat{\beta}_{\mathbf{r}}^{\prime}=$ $\hat{\beta}_{\mathbf{r}} \theta\left(2 s-\hat{n}_{\mathbf{r}}\right)$ of those constrained, true excitations to the cutoff Holstein-Primakoff's transition operators:
$\hat{\beta}_{\mathbf{r}}^{\prime}=\hat{a}_{0 \mathbf{r}}^{\dagger}\left(1+2 s-\hat{n}_{\mathbf{r}}\right)^{-1 / 2} \hat{a}_{\mathbf{r}} \theta\left(2 s-\hat{n}_{\mathbf{r}}\right)$.
The vector components of the spin operator become
$\hat{S}_{\mathbf{r}}^{x}=\frac{1}{2}\left(S_{\mathbf{r}}^{-}+\hat{S}_{\mathbf{r}}^{+}\right), \hat{S}_{\mathbf{r}}^{y}=\frac{i}{2}\left(S_{\mathbf{r}}^{-}-\hat{S}_{\mathbf{r}}^{+}\right), \hat{S}_{\mathbf{r}}^{z}=s-\hat{n}_{\mathbf{r}} ;$
$\hat{S}_{\mathbf{r}}^{+}=\sqrt{2 s-\hat{n}_{\mathbf{r}}} \hat{\beta}_{\mathbf{r}}^{\prime}, \hat{S}_{\mathbf{r}}^{-}=\hat{\beta}_{\mathbf{r}}^{\prime \dagger} \sqrt{2 s-\hat{n}_{\mathbf{r}}} ; \hat{n}_{\mathbf{r}}=\hat{\beta}_{\mathbf{r}}^{\prime \dagger} \hat{\beta}_{\mathbf{r}}^{\prime}$.
A free Hamiltonian of a system of N spins in a lattice
$H_{0}=\sum_{\mathbf{r}} \varepsilon \hat{n}_{\mathbf{r}}, \quad \hat{n}_{\mathbf{r}}=\hat{\beta}_{\mathbf{r}}^{\dagger} \hat{\beta}_{\mathbf{r}}, \quad \varepsilon=g \mu_{B} B_{\text {ext }}$,
is determined by a Zeeman energy $-g \mu_{B} B_{\text {ext }} \hat{S}^{z}$ of a spin in an external magnetic field $B_{\text {ext }}$ (which is assumed homogeneous and directed along the axis z) via a g-factor and a Bohr magneton $\mu_{B}=\frac{e \hbar}{2 M c} . T$ is a temperature.

An interaction Hamiltonian in the Ising model becomes
$H^{\prime}=-\sum_{\mathbf{r} \neq \mathbf{r}^{\prime}} J_{\mathbf{r}, \mathbf{r}^{\prime}}\left[s-\theta\left(2 s-\hat{n}_{\mathbf{r}}\right) \hat{n}_{\mathbf{r}}\right]\left[s-\theta\left(2 s-\hat{n}_{\mathbf{r}^{\prime}}\right) \hat{n}_{\mathbf{r}^{\prime}}\right]$,
where a coupling between spins is a symmetric function $J_{\mathbf{r}, \mathbf{r}^{\prime}}=$ $J_{\mathbf{r}-\mathbf{r}^{\prime}}$ of a vector $\mathbf{r}-\mathbf{r}^{\prime}$, connecting spins. For a spin at a site $\mathbf{r}_{\mathbf{0}}$ there are only the coordination number p of the nonzero couplings $J_{\mathbf{r}_{0}, \mathbf{r}_{1}} \neq 0$ with the neighboring spins at sites $\mathbf{r}_{\mathbf{1}}=\mathbf{r}_{\mathbf{0}}+\mathbf{1} ; l=$ $1, \ldots, p$. The result in Eq. (3) generalizes the Holstein-Primakoff's one [7] by including the nonpolynomial operator $\theta\left(2 s-\hat{n}_{\mathbf{r}}\right)$-cutoff functions, which add a spin-constraint nonlinear interaction and are crucially important in a critical region.

A total Hamiltonian $H=H_{0}+H^{\prime}$ makes any operator \hat{A}, evolving in an imaginary time $\tau \in\left[0, \frac{1}{T}\right]$ in a Heisenberg representation, the Matsubara operator $\tilde{A}_{\tau}=e^{\tau H} \hat{A} e^{-\tau H}$. A symbol $\tilde{A}_{j \tau}$ stands for an operator itself $\tilde{A}_{1 \tau}=\tilde{A}_{\tau}$ at $j=1$ and a Matsubara-conjugated operator $\tilde{A}_{2 \tau}=\tilde{\bar{A}}_{\tau}$ at $j=2$. Let $x=\{\tau, \mathbf{r}\}$ be a 4 D coordinate and $\hat{\theta}=\prod_{\mathbf{r}} \theta\left(2 s-\hat{n}_{\mathbf{r}}\right)$ - a product of all N cutoff factors.

The unconstrained and true Matsubara Green's functions for spin excitations are defined by a T_{τ}-ordering:
$G_{j_{1} \tau_{1} \mathbf{r}_{1}}^{j_{2} \tau_{1} \mathbf{r}_{2}}=-\left\langle T_{\tau} \tilde{\beta}_{j_{1} \tau_{1} \mathbf{r}_{1}} \tilde{\bar{\beta}}_{j_{2} \tau_{2} \mathbf{r}_{2}}\right\rangle,\langle\ldots\rangle \equiv \frac{\operatorname{Tr}\left\{\ldots e^{-\frac{H}{T}}\right\}}{\operatorname{Tr}\left\{e^{-\frac{H}{T}}\right\}}$,
$G_{j_{1} \tau_{1} \mathbf{r}_{1}}^{\prime} j_{2} \tau_{2} \mathbf{r}_{2}=-\left\langle T_{\tau} \tilde{\beta}^{\prime}{ }_{j_{1} \tau_{1} \mathbf{r}_{1}} \tilde{\bar{\beta}}^{\prime}{ }_{j_{2} \tau_{2} \mathbf{r}_{2}} \hat{\theta}\right\rangle / P_{s} ; \quad P_{s}=\langle\hat{\theta}\rangle$.
In the Ising model there is no coherence, $\left\langle\beta_{\mathbf{r} \tau}\right\rangle=0$, and the unconstrained Green's functions obey the usual Dyson equation with a total irreducible self-energy $\Sigma_{j_{1} x_{1}}^{j_{2} x_{2}}$,
$\left.G_{j_{1} x_{1}}^{j_{2} x_{2}}=G_{j_{1} x_{1}}^{(0)}\right)_{2} x_{2}+\check{G}^{(0)}\left[\check{\Sigma}\left[G_{j_{1} x_{1}}^{j_{2} x_{2}}\right]\right]$.
Here the integral operators $\check{\Sigma}$ or $\check{G}^{(0)}$, applied to any function $f_{j x}$, stand for a convolution of that function $f_{j x}$ over the variables j, τ, \mathbf{r} with the total irreducible self-energy Σ or a free propagator $G^{(0)}$, respectively:
$\check{K}\left[f_{j x}\right] \equiv \sum_{j^{\prime}=1}^{2} \sum_{\mathbf{r}^{\prime}} \int_{0}^{1 / T} K_{j x}^{j^{\prime} x^{\prime}} f_{j^{\prime} x^{\prime}} d \tau^{\prime}$ for $\check{K}=\check{\Sigma}, \check{G}^{(0)}$.
The total irreducible self-energy is defined by equation
$\left\langle T_{\tau}\left[\tilde{\beta}_{j_{1} x_{1}}, \tilde{H}_{\tau_{1}}^{\prime}\right] \tilde{\bar{\beta}}_{j_{2} x_{2}}\right\rangle=(-1)^{j_{1}} \sum_{j=1}^{2} \int_{0}^{\frac{1}{T}} \sum_{\mathbf{r}} \Sigma_{j_{1} x_{1}}^{j x} G_{j x}^{j_{j x} x_{2}} d \tau$.
The constrained, true Green's functions (5) do not obey the equations of a Dyson type due to a presence of the nonpolynomial functions $\theta\left(2 s-\hat{n}_{\mathbf{r}}\right)$. A standard diagram technique is not suited to deal with them.

2. A method of the recurrence equations for the partial operator contractions

We employ the recurrence equations, derived via a nonpolynomial diagram technique [6], to solve that problem and find the true, constrained Green's functions:
$G_{J_{1}}^{\prime J_{2}}=-\left\langle\tilde{b}_{J_{1}}^{J_{2}}\left[\tilde{\theta}_{\tau_{1}} \tilde{\theta}_{\tau_{2}}\right]\right\rangle / P_{s}$.
Here a basis partial two-operator contraction
$\tilde{b}_{J_{1}}^{J_{2}}\left[f\left(\left\{\tilde{n}_{x_{1}}, \tilde{n}_{x_{2}}\right\}\right)\right] \equiv \mathcal{A}_{\tau_{i_{1}} \tau_{i_{2}}} T_{\tau}\left\{\tilde{\beta}_{J_{1}}^{c} \tilde{\tilde{\beta}}_{J_{2}}^{c} f^{c}\left(\left\{\tilde{n}_{\tau_{1}}, \tilde{n}_{\tau_{2}}\right\}\right)\right\}$
is an operator-valued functional, evaluated for an operator function f and defined as a sum of all possible partial connected contractions, denoted by the superscripts " c ". We consider a generic case of an arbitrary operator function $f\left(\left\{\tilde{n}_{x_{1}}, \tilde{n}_{x_{2}}\right\}\right)$, which depends on the two sets $\left\{\tilde{n}_{\mathbf{r}_{1} \tau_{1}}\right\}$ and $\left\{\tilde{n}_{\mathbf{r}_{2} \tau_{2}}\right\}$ of the spin-excitation occupation operators at all lattice sites at two different times τ_{1}, τ_{2}. An antinormal ordering $\mathcal{A}_{\tau_{i_{1}} \tau_{i_{2}}}$ prescribes only positions of the external operators $\tilde{\beta}_{J_{1}}$ and $\tilde{\bar{\beta}}_{J_{2}}$ relative to the function $f\left(\left\{\tilde{n}_{x_{1}}, \tilde{n}_{x_{2}}\right\}\right)$ and does not affect any other operators' positions, set by T_{τ}-ordering. We use the short notations for the combined indexes $J=\left\{j i \mathbf{r}_{\mathbf{i}}\right\}$ and $J_{l}=\left\{j_{l} i_{l} \mathbf{r}_{\mathbf{i}_{l}}\right\}$. An index $i=1,2$ (or i_{l}) enumerates different times τ_{i} (or $\tau_{i_{l}}$) in the external operator $\tilde{\beta}_{j \tau_{i} \mathbf{r}_{\mathbf{i}}}$ (or $\tilde{\beta}_{j l \tau_{i}} \mathbf{r}_{\mathbf{r}_{\mathbf{i}}}$).

The exact closed recurrence (difference) equations for the basis partial operator contraction $\tilde{b}_{J_{1}}^{J_{2}}\left[f\left(\left\{m_{J^{\prime}}\right\}\right)\right]$ for an arbitrary function $f\left(\left\{m_{J^{\prime}}\right\}\right)=f\left(\left\{\tilde{n}_{x_{1}}+2 s+1-m_{x_{1}}, \tilde{n}_{x_{2}}+2 s+1-m_{x_{2}}\right\}\right)$, where a set $\left\{m_{J^{\prime}}\right\}$ consists of two sets of integers $\left\{m_{x_{1}}\right\},\left\{m_{x_{2}}\right\}$, are derived in [6]:
$\tilde{b}_{J_{1}}^{J_{2}}[f]=g_{J_{1}}^{J_{1}^{\prime}} \Delta_{m_{J_{1}^{\prime}}} \Delta_{m_{J_{2}^{\prime}}} \tilde{b}_{J_{1}^{J^{\prime}}}^{J_{2}^{\prime}}[f] g_{J_{2}^{\prime}}^{J_{2}}-g_{J_{1}}^{J^{\prime}} \Delta_{m_{J^{\prime}}} f g_{J^{\prime}}^{J_{2}}-g_{J_{1}}^{J_{2}} f$.
Here a matrix $g_{J}^{J^{\prime}}$ is the unconstrained Green's function $G_{J}^{J^{\prime}}$ for $\tau_{i} \neq \tau_{i^{\prime}}$ and its limit at $\tau^{\prime} \rightarrow \tau-(-1)^{j^{\prime}} 0$ for equal times in accord with an anti-normal ordering of operators $\tilde{\beta}_{J}, \tilde{\bar{\beta}}_{J^{\prime}}$. The latter is dictated by the anti-normal ordering in the definition of the basis contractions in Eq. (9). In Eq. (10), a symbol $\Delta_{m_{J^{\prime}}}$ means a partial difference operator [9-11] $\left(\Delta_{m_{1}} f\left(m_{1}, m_{2}\right)=f\left(m_{1}+1, m_{2}\right)-\right.$ $f\left(m_{1}, m_{2}\right)$ and $\left.\Delta_{m_{2}} f\left(m_{1}, m_{2}\right)=f\left(m_{1}, m_{2}+1\right)-f\left(m_{1}, m_{2}\right)\right)$, and we assume an Einstein's summation over the repeated indexes $J^{\prime}, J_{1}^{\prime}, J_{2}^{\prime}$. The sums run over $j^{\prime}=1,2$ and all different arguments $\tilde{n}_{x_{i^{\prime}}^{\prime}}$ of f for J^{\prime} and similarly for $J_{1}^{\prime}, J_{2}^{\prime}$.

A linear system (10) of the integral equations over the spin positions' variables and discrete (recurrence) equations over variables $\left\{m_{J^{\prime}}\right\}$ can be solved by well-known methods [9-11], such as a Z-transform, a characteristic function, or a direct recursion. The partial contraction in Eq. (8) is given by those solutions at $m_{J^{\prime}}=2 s+1$.

3. The exact total irreducible self-energy

A formula for the exact total irreducible self-energy
$\Sigma_{J_{0}}^{J}=-\delta\left(\tau-\tau_{0}\right) \sum_{l=1}^{p} \sum_{I^{\prime}} J_{\mathbf{r}_{0}, \mathbf{r}_{1}} \bar{b}_{I_{0}}^{I^{\prime}}\left[f\left(\tilde{n}_{\mathbf{r}_{\mathbf{0}}}-1, \tilde{n}_{\mathbf{r}_{\mathbf{1}}}\right)\right]\left(g^{-1}\right)_{I^{\prime}}^{I}$
follows from Eqs. (7) and (10). Here $\bar{b}_{I_{0}}^{I_{0}}[f]=\left\langle\tilde{b}_{I_{0}}^{\prime}[f]\right\rangle, f\left(\tilde{n}_{\mathbf{r}_{0}}, \tilde{n}_{\mathbf{r}_{\mathbf{1}}}\right)=$ $\left(\delta_{0, \tilde{n}_{\mathrm{r}_{0}}}-\delta_{1, \tilde{n}_{\mathrm{r}_{0}}}\right)\left(1-2 \delta_{1, \tilde{n}_{\mathrm{r}_{1}}}\right)$, and $\left(g^{-1}\right)_{I^{\prime}}^{I}$ is a matrix, inverse to the equal-time anti-normally ordered correlation matrix $g_{I}^{I^{\prime}}$ over the combined indexes $I=\{j, \mathbf{r}\}$ and $I^{\prime}=\left\{j^{\prime}, \mathbf{r}^{\prime}\right\}$. The self-energy matrix has a pure $(p+1)$-banded diagonal structure in indexes $\mathbf{r}_{\mathbf{0}}, \mathbf{r}$,
$\Sigma_{J_{0}}^{J}=\delta\left(\tau-\tau_{0}\right) \sum_{l=0}^{p} \delta_{\mathbf{r}, \mathbf{r}_{\mathbf{1}}} \Sigma_{j_{0} \mathbf{r}_{\mathbf{0}}}^{j \mathbf{r}_{\mathbf{1}}}(l), \quad \mathbf{r}_{\mathbf{l}}=\mathbf{r}_{\mathbf{0}}+\mathbf{l}$.
For a given spin \mathbf{r}_{0}, it is not zero only for the neighboring spins $\mathbf{r}=\mathbf{r}_{1} ; l=0,1, \ldots, p$. We find each 2×2-matrix block $\Sigma_{j_{0}}^{j}(l)$ by solving the recurrence Eq. (10). That result is crucial for the exact solution of the Ising model.

We consider a homogeneous phase, when the Green's function $G_{j_{1} \tau_{1} \mathbf{r}_{1}}^{j_{2} \tau_{2}}$ depends on \mathbf{r}_{1} and \mathbf{r}_{2} only via $\mathbf{r}_{2}-\mathbf{r}_{1}$. So, it is a Toeplitz matrix with respect to indexes \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$. A general case will be presented elsewhere. We find the 2×2-matrices $\bar{b}_{j_{0}}^{j^{\prime}}(l)=$ $\bar{b}_{j_{0} \mathbf{r}_{0}}^{j} \mathbf{r}_{\mathbf{r}}\left[f\left(\tilde{n}_{\mathbf{r}_{0}}-1, \tilde{n}_{\mathbf{r}_{1}}\right)\right]$ as follows

https://daneshyari.com/en/article/1866760

Download Persian Version:
https://daneshyari.com/article/1866760

Daneshyari.com

[^0]: * Corresponding author at: Department of Physics and Astronomy, Texas A\&M University, College Station, TX 77843-4242, USA.

 E-mail address: vkochar@physics.tamu.edu (V.V. Kocharovsky).

