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lattice of spins, described as the constrained spin bosons in a Holstein-Primakoff representation.

© 2015 Elsevier B.V. All rights reserved.

An exact solution of a famous three-dimensional (3D) Ising
model (or any other nontrivial 3D model) of a phase transition
was not found, despite almost a century of intensive effort. Only
the 1D [1] and 2D Ising models with zero [2] or non-zero [3] ex-
ternal field were solved (see [4,5] and references therein). That 3D
problem remains one of the major unsolved problems in physics.

1. Arigorous theory of the constrained spin bosons in a
Holstein-Primakoff representation

We start with a rigorous theory, that follows from a recently
developed exact approach to the critical phenomena [6] and of-
fers an exact solution for the 3D Ising model. Let us consider a
cubic lattice of N interacting immovable spins s = % with a pe-
riod a in a box with volume V = L3 and periodic boundary con-
ditions. The lattice sites are enumerated by a position vector r.
A dimensionality of the lattice is arbitrary d =1,2,3,.... Accord-
ing to a Holstein-Primakoff representation [7], worked out also by
Schwinger [8], each spin is a system of two spin bosons, which
are constrained to have a fixed total occupation figr + fiy = 2;

Ay = ﬁIﬁr, for = agrao,. The a; and dgp are the annihilation opera-
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tors. A vector spin operator S; atasiteris given by its components
as

X = =

r 2 $or 2i
By means of a many-body Hilbert space reduction [6], we can
prove that this system is isomorphic to a system of N spin-
boson excitations, described by annihilation operators B, at each
site r and obeying the Bose canonical commutation relations
[,3,,;@1,] = &y, if we cutoff them by a step-function 6(2s — fiy).
This isomorphism is valid on an entire physically allowed Hilbert
space and is achieved by equating the annihilation operators ﬁ; =
/§r0(25—ﬁr) of those constrained, true excitations to the cutoff
Holstein-Primakoff’s transition operators:
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The vector components of the spin operator become
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A free Hamiltonian of a system of N spins in a lattice
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is determined by a Zeeman energy —g,uBBextﬁz of a spin in an
external magnetic field Bey (Which is assumed homogeneous and
directed along the axis z) via a g-factor and a Bohr magneton
e = ze—Nﬁ,C T is a temperature.

An interaction Hamiltonian in the Ising model becomes

=Y Jerls = 0(2s — fin)iiclls — 0(2s — fip)fig], 3)
r#£r’

where a coupling between spins is a symmetric function Jpp =
Jr—r of a vector r — r/, connecting spins. For a spin at a site rp
there are only the coordination number p of the nonzero cou-
plings Jr, r, # 0 with the neighboring spins at sites rj=ro +1; I =

., p. The result in Eq. (3) generalizes the Holstein-Primakoff’s
one [7] by including the nonpolynomial operator 8 (2s — fiy)-cutoff
functions, which add a spin-constraint nonlinear interaction and
are crucially important in a critical region.

A total Hamiltonian H = Hy + H’ makes any operator A, evolv-
ing in an imaginary time t € [0, }] in a Heisenberg representation,
the Matsubara operator A; = eTHAe—TH A symbol Aj-[ stands for
an operator itse1~f A1z = A; at j=1 and a Matsubara-conjugated

operator Ay; = A; at j=2. Let x={z,r} be a 4D coordinate and
0= [1.6(2s —fir) - a product of all N cutoff factors.

The unconstrained and true Matsubara Green's functions for
spin excitations are defined by a T,-ordering:

H
i ~ = Tr{...e" T}
J2tor -
jon = —(TeBimnBiyom) () = e )
33’1?‘:2 = _<TT'B/J'1Tll‘lﬁ/jzle‘zm/Ps; Ps = (0). (5)

In the Ising model there is no coherence, (fr;) =0, and the un-
constrained Green’s functions obey the usual Dyson equation with

a total irreducible self-energy Z]jf)’(‘f
szxz _ G(0)12X2 + G(O)[E[GJZXZ]] (6)

J1x1 J1x1 J1x1

Here the integral operators ¥ or G©, applied to any function fixr
stand for a convolution of that function fjx over the variables
j, T, r with the total irreducible self-energy ¥ or a free propagator
GO, respectively:

KUfid =332y S Jo! T KLY fedt for K =%, GO

The total irreducible self-energy is defined by equation

(Tf[ﬂh’ﬁ’ HT1]/3]2X2 =(= 1)]1 Z/ZZJJTM szxzdr (7)

=1y

The constrained, true Green's functions (5) do not obey the
equations of a Dyson type due to a presence of the nonpolynomial
functions 0(2s —fi;). A standard diagram technique is not suited to
deal with them.

2. A method of the recurrence equations for the partial operator
contractions

We employ the recurrence equations, derived via a nonpoly-
nomial diagram technique [6], to solve that problem and find the
true, constrained Green’s functions:

G? = —(b]16,0r,))/ Ps. 8)

Here a basis partial two-operator contraction

BILS (i Aoy D1 = Ag, o, Te (BS, By, £ (i ey D) 9)

is an operator-valued functional, evaluated for an operator function
f and defined as a sum of all possible partial connected contrac-
tions, denoted by the superscripts “c”. We consider a generic case
of an arbitrary operator function f({fiy,,fx,}), which depends on
the two sets {fiy,¢,} and {fir,7,} of the spin-excitation occupation
operators at all lattice sites at two different times 71, 72. An anti-
normal ordering .Afi] 7, prescribes only positions of the external

operators /511 and 5]2 relative to the function f({fix,,x,}) and
does not affect any other operators’ positions, set by T,-ordering.
We use the short notations for the combined indexes J = {jir;}
and J; = {jjiry}. An index i =1,2 (or i;) enumerates different
times 7; (or 7;) in the external operator ijiri (or /§jm’,ril ).

The exact closed recurrence (difference) equations for the basis
partial operator contraction Eﬁ[ f({{mj}] for an arbitrary function
fdmp)) = f({Ax, + 25 + 1 — my,, Ay, + 25 + 1 —my,}), where a
set {m/} consists of two sets of integers {my,}, {mx,}, are derived
in [6]:

— &), Am, fgl? — g2 f. (10)

bLf1=g]! Amy, A, B S1e ]

Here a matrix g ] is the unconstrained Green’s function G{ for
T; # Ty and its limit at T/ — 7 — (-=1)7'0 for equal times in accord
with an anti-normal ordering of operators B], B y- The latter is
dictated by the anti-normal ordering in the definition of the basis
contractions in Eq. (9). In Eq. (10), a symbol Am!, means a par-
tial difference operator [9-11] (Ap, f(m1,mp) = f(m; +1,mp) —
f(my,my) and Ap, f(m1,mz) = f(m1,mz +1) — f(m1,mz)), and
we assume an Einstein’s summation over the repeated indexes
J'. Ji, J5. The sums run over j'=1,2 and all different arguments
fiy of f for J' and similarly for Jj, J5.

‘A linear system (10) of the integral equations over the spin
positions’ variables and discrete (recurrence) equations over vari-
ables {m;} can be solved by well-known methods [9-11], such
as a Z-transform, a characteristic function, or a direct recursion.
The partial contraction in Eq. (8) is given by those solutions at
my =2s+1.

3. The exact total irreducible self-energy

A formula for the exact total irreducible self-energy

p
T =8t —10) Y. Y Jrombl[f iy — 1.7e)I(g™ D}, (11)
I=1 1
follows from Egs. (7) and (10). Here Efé[f] =
(80,5 — 81,7y ) (1
equal-time anti-normally ordered correlation matrix gf/ over the

combined indexes I = {j,r} and I’ = {j/, r'}. The self-energy matrix
has a pure (p + 1)-banded diagonal structure in indexes rp, r,

(b1 LF 1), f (irg, i) =

— 281 5,), and (g~h}, is a matrix, inverse to the

p
T =8 —10) Y den Tt (). m=ro+l. (12)
1=0
For a given spin ry, it is not zero only for the neighboring spins
r=r; [=0,1,...,p. We find each 2 x 2-matrix block E;:O(l) by
solving the recurrence Eq. (10). That result is crucial for the exact
solution of the Ising model.

We consider a homogeneous phase, when the Green’s func-
tion G;fz:f depends on ry and r; only via r, — ry. So, it is a
Toeplitz matrix with respect to indexes r; and rz. A general case
will be presented elsewhere. We find the 2 x 2-matrices Ej; )=

bjo‘;“o [f(ﬁrl) - 17 ﬁl‘])] as follows
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