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We find the exact solutions for the main steps in the analysis of the three-dimensional Ising model. 
A method is based on a recently found rigorous theory of magnetic phase transitions in a mesoscopic 
lattice of spins, described as the constrained spin bosons in a Holstein–Primakoff representation.
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An exact solution of a famous three-dimensional (3D) Ising 
model (or any other nontrivial 3D model) of a phase transition 
was not found, despite almost a century of intensive effort. Only 
the 1D [1] and 2D Ising models with zero [2] or non-zero [3] ex-
ternal field were solved (see [4,5] and references therein). That 3D 
problem remains one of the major unsolved problems in physics.

1. A rigorous theory of the constrained spin bosons in a 
Holstein–Primakoff representation

We start with a rigorous theory, that follows from a recently 
developed exact approach to the critical phenomena [6] and of-
fers an exact solution for the 3D Ising model. Let us consider a 
cubic lattice of N interacting immovable spins s = 1

2 with a pe-
riod a in a box with volume V = L3 and periodic boundary con-
ditions. The lattice sites are enumerated by a position vector r. 
A dimensionality of the lattice is arbitrary d = 1, 2, 3, . . . . Accord-
ing to a Holstein–Primakoff representation [7], worked out also by 
Schwinger [8], each spin is a system of two spin bosons, which 
are constrained to have a fixed total occupation n̂0r + n̂r = 2s; 
n̂r = â†

râr , n̂0r = â†
0râ0r . The âr and â0r are the annihilation opera-
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tors. A vector spin operator Ŝr at a site r is given by its components 
as

Ŝx
r = â†

0râr + â†
râ0r

2
, Ŝ y

r = â†
0râr − â†

râ0r

2i
, Ŝ z

r = s − â†
râr.

By means of a many-body Hilbert space reduction [6], we can 
prove that this system is isomorphic to a system of N spin-
boson excitations, described by annihilation operators β̂r at each 
site r and obeying the Bose canonical commutation relations 
[β̂r, β̂

†
r′ ] = δr,r′ , if we cutoff them by a step-function θ(2s − n̂r). 

This isomorphism is valid on an entire physically allowed Hilbert 
space and is achieved by equating the annihilation operators β̂ ′

r =
β̂rθ(2s − n̂r) of those constrained, true excitations to the cutoff 
Holstein–Primakoff’s transition operators:

β̂ ′
r = â†

0r(1 + 2s − n̂r)
−1/2ârθ(2s − n̂r). (1)

The vector components of the spin operator become

Ŝx
r = 1

2 (S−
r + Ŝ+

r ), Ŝ y
r = i

2
(S−

r − Ŝ+
r ), Ŝ z

r = s − n̂r;
Ŝ+

r =
√

2s − n̂rβ̂
′
r, Ŝ−

r = β̂
′ †
r

√
2s − n̂r; n̂r = β̂

′ †
r β̂ ′

r.

A free Hamiltonian of a system of N spins in a lattice

H0 =
∑

r

εn̂r, n̂r = β̂
†
r β̂r, ε = gμB Bext, (2)
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is determined by a Zeeman energy −gμB Bext Ŝ z of a spin in an 
external magnetic field Bext (which is assumed homogeneous and 
directed along the axis z) via a g-factor and a Bohr magneton 
μB = eh̄

2Mc . T is a temperature.
An interaction Hamiltonian in the Ising model becomes

H ′ = −
∑
r�=r′

Jr,r′ [s − θ(2s − n̂r)n̂r][s − θ(2s − n̂r′)n̂r′ ], (3)

where a coupling between spins is a symmetric function Jr,r′ =
Jr−r′ of a vector r − r′ , connecting spins. For a spin at a site r0
there are only the coordination number p of the nonzero cou-
plings Jr0,rl �= 0 with the neighboring spins at sites rl = r0 + l; l =
1, . . . , p. The result in Eq. (3) generalizes the Holstein–Primakoff’s 
one [7] by including the nonpolynomial operator θ(2s − n̂r)-cutoff 
functions, which add a spin-constraint nonlinear interaction and 
are crucially important in a critical region.

A total Hamiltonian H = H0 + H ′ makes any operator Â, evolv-
ing in an imaginary time τ ∈ [0, 1

T ] in a Heisenberg representation, 
the Matsubara operator Ãτ = eτ H Âe−τ H . A symbol Ã jτ stands for 
an operator itself Ã1τ = Ãτ at j = 1 and a Matsubara-conjugated 
operator Ã2τ = ˜̄Aτ at j = 2. Let x = {τ , r} be a 4D coordinate and 
θ̂ = ∏

r θ(2s − n̂r) – a product of all N cutoff factors.
The unconstrained and true Matsubara Green’s functions for 

spin excitations are defined by a Tτ -ordering:

G j2τ2r2
j1τ1r1

= −〈Tτ β̃ j1τ1r1
˜̄β j2τ2r2

〉, 〈. . .〉 ≡ Tr{. . . e− H
T }

Tr{e− H
T }

, (4)

G ′ j2τ2r2
j1τ1r1

= −〈Tτ β̃ ′
j1τ1r1

˜̄β ′
j2τ2r2

θ̂〉/P s; P s = 〈θ̂〉. (5)

In the Ising model there is no coherence, 〈βrτ 〉 = 0, and the un-
constrained Green’s functions obey the usual Dyson equation with 
a total irreducible self-energy � j2x2

j1x1
,

G j2x2
j1x1

= G(0) j2x2
j1x1

+ Ǧ(0)[�̌[G j2x2
j1x1

]]. (6)

Here the integral operators �̌ or Ǧ(0) , applied to any function f jx , 
stand for a convolution of that function f jx over the variables 
j, τ , r with the total irreducible self-energy � or a free propagator 
G(0) , respectively:

Ǩ [ f jx] ≡ ∑2
j′=1

∑
r′

∫ 1/T
0 K j′x′

jx f j′x′dτ ′ for Ǩ = �̌, Ǧ(0).

The total irreducible self-energy is defined by equation

〈Tτ [β̃ j1x1 , H̃ ′
τ1

] ˜̄β j2x2
〉 = (−1) j1

2∑
j=1

1
T∫

0

∑
r

�
jx
j1x1

G j2x2
jx dτ . (7)

The constrained, true Green’s functions (5) do not obey the 
equations of a Dyson type due to a presence of the nonpolynomial 
functions θ(2s − n̂r). A standard diagram technique is not suited to 
deal with them.

2. A method of the recurrence equations for the partial operator 
contractions

We employ the recurrence equations, derived via a nonpoly-
nomial diagram technique [6], to solve that problem and find the 
true, constrained Green’s functions:

G ′ J2
J1

= −〈b̃ J2
J1

[θ̃τ1 θ̃τ2 ]〉/P s. (8)

Here a basis partial two-operator contraction

b̃ J2
J1

[ f ({ñx1 , ñx2})] ≡ Aτi1 τi2
Tτ {β̃c

J1
˜̄βc

J2
f c({ñτ1 , ñτ2})} (9)

is an operator-valued functional, evaluated for an operator function 
f and defined as a sum of all possible partial connected contrac-
tions, denoted by the superscripts “c”. We consider a generic case 
of an arbitrary operator function f ({ñx1 , ̃nx2 }), which depends on 
the two sets {ñr1τ1 } and {ñr2τ2 } of the spin-excitation occupation 
operators at all lattice sites at two different times τ1, τ2. An anti-
normal ordering Aτi1 τi2

prescribes only positions of the external 

operators β̃ J1 and ˜̄β J2
relative to the function f ({ñx1 , ̃nx2 }) and 

does not affect any other operators’ positions, set by Tτ -ordering. 
We use the short notations for the combined indexes J = { jiri}
and Jl = { jl ilril }. An index i = 1, 2 (or il) enumerates different 
times τi (or τil ) in the external operator β̃ jτi ri (or β̃ jlτil

ril
).

The exact closed recurrence (difference) equations for the basis 
partial operator contraction b̃ J2

J1
[ f ({m J ′ })] for an arbitrary function 

f ({m J ′ }) = f ({ñx1 + 2s + 1 − mx1 , ̃nx2 + 2s + 1 − mx2 }), where a 
set {m J ′ } consists of two sets of integers {mx1 }, {mx2}, are derived 
in [6]:

b̃ J2
J1

[ f ] = g
J ′1
J1

�m J ′1
�m J ′2

b̃
J ′2
J ′1

[ f ]g J2
J ′2

− g J ′
J1

�m J ′ f g J2
J ′ − g J2

J1
f . (10)

Here a matrix g J ′
J is the unconstrained Green’s function G J ′

J for 
τi �= τi′ and its limit at τ ′ → τ − (−1) j′ 0 for equal times in accord 
with an anti-normal ordering of operators β̃ J , ˜̄β J ′ . The latter is 
dictated by the anti-normal ordering in the definition of the basis 
contractions in Eq. (9). In Eq. (10), a symbol �m J ′ means a par-
tial difference operator [9–11] (�m1 f (m1,m2) = f (m1 + 1,m2) −
f (m1,m2) and �m2 f (m1,m2) = f (m1,m2 + 1) − f (m1,m2)), and 
we assume an Einstein’s summation over the repeated indexes 
J ′, J ′

1, J
′
2. The sums run over j′ = 1, 2 and all different arguments 

ñx′
i′

of f for J ′ and similarly for J ′
1, J

′
2.

A linear system (10) of the integral equations over the spin 
positions’ variables and discrete (recurrence) equations over vari-
ables {m J ′ } can be solved by well-known methods [9–11], such 
as a Z-transform, a characteristic function, or a direct recursion. 
The partial contraction in Eq. (8) is given by those solutions at 
m J ′ = 2s + 1.

3. The exact total irreducible self-energy

A formula for the exact total irreducible self-energy

�
J
J0

= −δ(τ − τ0)

p∑
l=1

∑
I ′

Jr0,rl b̄
I ′
I0

[ f (ñr0 − 1, ñrl)](g−1)I
I ′ (11)

follows from Eqs. (7) and (10). Here b̄I ′
I0

[ f ] = 〈b̃I ′
I0

[ f ]〉, f (ñr0 , ̃nrl) =
(δ0,ñr0

− δ1,ñr0
)(1 − 2δ1,ñrl

), and (g−1)I
I ′ is a matrix, inverse to the 

equal-time anti-normally ordered correlation matrix gI ′
I over the 

combined indexes I = { j, r} and I ′ = { j′, r′}. The self-energy matrix 
has a pure (p + 1)-banded diagonal structure in indexes r0, r,

�
J
J0

= δ(τ − τ0)

p∑
l=0

δr,rl�
jrl
j0r0

(l), rl = r0 + l. (12)

For a given spin r0 , it is not zero only for the neighboring spins 
r = rl; l = 0, 1, . . . , p. We find each 2 × 2-matrix block � j

j0
(l) by 

solving the recurrence Eq. (10). That result is crucial for the exact 
solution of the Ising model.

We consider a homogeneous phase, when the Green’s func-
tion G j2τ2r2

j1τ1r1
depends on r1 and r2 only via r2 − r1 . So, it is a 

Toeplitz matrix with respect to indexes r1 and r2 . A general case 
will be presented elsewhere. We find the 2 × 2-matrices b̄ j′

j0
(l) =

b̄ j′rl
j0r0

[ f (ñr0 − 1, ̃nrl )] as follows
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