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We derive a one-step extension of the well known Swanson oscillator that describes a specific type 
of pseudo-Hermitian quadratic Hamiltonian connected to an extended harmonic oscillator model. Our 
analysis is based on the use of the techniques of supersymmetric quantum mechanics and addresses
various representations of the ladder operators starting from a seed solution of the harmonic oscillator 
expressed in terms of a pseudo-Hermite polynomial. The role of the resulting chain of Hamiltonians 
related to similarity transformation is then exploited. In the second part we write down a two 
dimensional generalization of the Swanson Hamiltonian and establish superintegrability of such a system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Seeking rational extensions of known solvable systems is cur-
rently one of the major topics of research in quantum mechanics. 
Indeed, recent times have witnessed a great deal of activity in gen-
erating rationally extended models in the context of polynomial 
Heisenberg algebras (PHA) and exceptional orthogonal polynomi-
als [1–4]. A particularly simple one is for the problem of harmonic 
oscillator in which case the ladder operators have been constructed 
through the combination of the oscillator creation and annihilation 
operators along with the supercharges or having the combina-
tion of the latter. In this regard, harmonic rational extension has
been carried out in the framework of a supersymmetric quantum 
mechanics (SUSYQM) theory [5,6]. In particular, 1-step extensions 
have been sought for the radial oscillator and its generalization, 
the Scarf I (also sometimes referred to as Poschl–Teller or Poschl–
Teller I) [7–15], and the generalized Poschl–Teller (also sometimes 
referred to as hyperbolic Poschl–Teller or Poschl–Teller II) [9,10,16].

In this article we apply standard supersymmetric (SUSY) tech-
niques to develop a systematic procedure for obtaining a solvable 
rational extension of a non-Hermitian quadratic Hamiltonian that 
was proposed by Swanson [17] sometime ago and was shown 
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to possess real and positive eigenvalues. Such a model that we 
present in its differential operator form is new and opens the way 
of constructing new classes of non-Hermitian quadratic Hamil-
tonians based on rational extensions. We also address a general 
two-dimensional analog of Swanson Hamiltonian from a two-
dimensional perspective that is separable in Cartesian coordinates 
and establish superintegrability of such a system by making suit-
able use an underlying ladder operators.

2. Swanson model

The Swanson model deals with a specific type of a non-
Hermitian Hamiltonian connected to an extended harmonic os-
cillator problem. A general quadratic form for it has the simple 
structure

Hs = ωa†a + αa2 + β(a†)2 + 1

2
ω (2.1)

where a and a† are respectively the usual annihilation and creation 
operators of the one-dimensional harmonic oscillator obeying the 
canonical commutation relation [a, a†] = 1. In (2.1), ω, α and β are 
real constants. It is clear that with α �= β , H s ceases to be Hermi-
tian. Nonetheless, it is pseudo-Hermitian [18] embodying parity-
time symmetry and supports a purely real, positive spectrum over 
a certain range of parameters. Swanson Hamiltonian has been 
widely employed as a toy model to investigate a wide class of non-
Hermitian systems for different situations. Some of its applications 
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have been in exploring the choice of a unique and physical metric 
operator to generate an equivalent Hermitian system [18–22], set-
ting up of a group structure of the Hamiltonian [23,24], looking 
for possible quasi-Hermitian and pseudo-supersymmetric (SUSY) 
extensions [25–27], working out an N -fold SUSY connection [28], 
estimating minimum length uncertainty relations that result from 
the structure of non-commutative algebras [29,30], studying a rel-
evant R-deformed algebra [31], writing down supercoherent states 
[32] and investigating some of the aspects of classical and quan-
tum dynamics for it [33,34].

A similarity transformation allows us to write down [19] the 
Hermitian equivalence of Hs . In this way an equivalent Hermitian 
counterpart of Hs turns out to be a scaled harmonic oscillator:

h = ρHρ−1

= −1

2
(ω − α − β)

d2

dx2
+ 1

2
x2 ω2 − 4αβ

ω − α − β
+ 1

2
ω (2.2)

where ρ = e
1
2 λx2

along with the accompanying eigenfunctions

ψn(x) = Nne− 1
2 x2(λ+�2)Hn(�x). (2.3)

In (2.2) and (2.3) the parameters λ and � are defined by

λ = β − α

ω − α − β
, � = (ω2 − 4αβ)

1
4

(ω − α − β)
1
2

(2.4)

and Hn is an nth degree Hermite polynomial. The eigenfunctions 
are orthonormal with respect to the quantity eλx2

i.e.∫
ψ∗

m(x)eλx2
ψn(x)dx = δmn. (2.5)

We note that the scaled harmonic oscillator Hamiltonian h as 
given by (2.2) can be cast into the standard form through the 
transformation

h → h̃ = 2√
ω2 − 4αβ

(h − 1

2
ω) (2.6)

and introducing a change of variable x → z as given by

x → z = 4

√
ω2 − 4αβ

(ω − α − β)2
x ≡ �x. (2.7)

Thus we arrive at the following Schrödinger operator for h̃:

h̃ = − d2

dz2
+ z2 (2.8)

from which we develop a SUSY scheme by means of standard su-
percharges that go with it.

3. SUSY scenario

The Hamiltonian h̃ can be embedded in a supersymmetric set-
ting [6] by defining a pair of partner Hamiltonians in terms of the 
z-coordinate

h̃(+) = Ã† Ã = − d2

dz2
+ Ṽ (+) − Ẽ ≡ h̃ − Ẽ (3.9)

h̃(−) = Ã Ã† = − d2

dz2
+ Ṽ (−) − Ẽ (3.10)

where the operators Ã and Ã† are governed by the superpotential 
W̃ (z):

Ã† = − d

dz
+ W̃ (z), Ã = d

dz
+ W̃ (z). (3.11)

This provides identification of the corresponding partner potentials

Ṽ (±)(z) = W̃ 2(z) ∓ W̃ ′(z) + Ẽ. (3.12)

It should be remarked that the component Hamiltonians h̃(+)

and h̃(−) intertwine with the operators Ã and Ã† in the manner 
Ãh̃(+) = h̃(−) Ã and Ã†h̃(−) = h̃(+) Ã†. Further the underlying node-
less eigenfunction φ̃(x) of the Schrödinger equation

(− d2

dz2
+ Ṽ (+))φ̃(z) = Ẽφ̃(z) (3.13)

has the feature that it is given by W̃ (z) = −(log(φ̃(z))′ where the 
prime stands for the derivative with respect to z. The factorization 
energy Ẽ is assumed to be smaller than or equal to the ground-
state energy of Ṽ (+) . From (2.8) and (3.9), it is clear that Ṽ (+)

is identifiable with Ṽ (+) = z2. Then with Ẽ = 1 and W̃ (z) = z, 
the partner potential turns out to be Ṽ (−) = z2 + 2 reflecting the 
shape-invariance character of the harmonic oscillator, Ṽ (−) being 
just a translated oscillator with respect to Ṽ (+) .

If however, Ẽ < 1, then the only possible nodeless seed solu-
tions of (3.13) are of the type

φ̃m(z) = Hm(z)e
1
2 z2

, m = 2,4,6, . . . (3.14)

where the pseudo-Hermite polynomial Hm(z) is related to the 
standard Hermite by Hm(x) = (−1)m Hm(ix). We remark that ψm of 
the equivalent Hamiltonian representation of Swanson Hamiltonian 
is invariant under x → ix. This means that given the correspon-
dence between the Hermite polynomials and their pseudo-Hermite 
counterparts, it follows from (2.3) that

ψn(ix) = Nne
1
2 x2(λ+�2)Hn(i�x), n = 0,1,2,3, . . . (3.15)

is also an eigenstate of Hs . Now transforming ψn(ix) as ψn(ix) →
ρ−1ψn(ix) we in fact recover the seed solution ψn(ix) =
Nne

1
2 x2(λ+�2)Hn(ix) where Hn(ix) is the standard Hermite poly-

nomial.
Given φ̃m(z) as (3.14), the accompanying superpotential W̃ (z)

is given by

W̃ (z) = −z − H′
m

Hm
(≡ − φ̃′

φ̃
). (3.16)

The partner potential ˜V (−)(z) then reads

Ṽ (−)(z) = z2 − 2[H
′′
m

Hm
− (

H′
m

Hm
)2 + 1] (3.17)

along with the energy spectrum

Ẽm = −2m − 1. (3.18)

The explicit forms first appear in [35] in the course of deriving 
the exact closed form solutions of a generalized one-dimensional 
potential [36] that has a form intermediate to the harmonic and 
isotonic oscillators. Indeed the latter corresponds to m = 2 which 
is the second category of rational extension. Subsequently, a trans-
lational shape invariant property of (3.16) with a zero transla-
tional amplitude was established in [37] and also more recently 
discussed in the Krein–Adler and Darboux–Crum construction of 
these systems [38,39].

At this stage it is instructive to revert to the x-coordinate and 
write down the supersymmetric partner Hamiltonian counterpart 
of Hs . Defining

J = 2√
ω2 − 4αβ

, z = �x, E = Ẽ

J
(3.19)

and noting that h̃(+) represents the form of (2.2), the h̃(+) compo-
nent reads in terms of the parameters J and �:
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