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A simple derivation of the classical solutions of a nonlinear model describing a harmonic oscillator on 
the sphere and the hyperbolic plane is presented in polar coordinates. These solutions are then related to 
those in cartesian coordinates, whose form was previously guessed. In addition, the nature of the classical 
orthogonal polynomials entering the bound-state radial wavefunctions of the corresponding quantum 
model is identified.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During many years, there has been a continuing interest for 
some generalizations [1–4] of a classical nonlinear oscillator [5,6], 
which was introduced as a one-dimensional analogue of some 
quantum field theoretical models, and for the corresponding ex-
tensions [2,3,7–11] of its quantum version [12,13]. Such a model 
is indeed an interesting example of a system with nonlinear oscil-
lations with a frequency showing amplitude dependence. Further-
more, since it contains both a nonlinear potential and a position-
dependent mass, it is amenable to applications in those areas 
wherein the harmonicity of vibrations breaks down, such as in 
high-energy molecular states, or wherein a position-dependent ef-
fective mass is a useful concept, such as in many condensed-matter 
systems or many-body problems.

In 2004, Cariñena, Rañada, Santander, and Senthilvelan intro-
duced a two-dimensional (and more generally n-dimensional) clas-
sical generalization [1] of the one-dimensional model of [5,6]. They 
established that the nonlinearity parameter λ, entering the defini-
tion of the potential and the position-dependent mass, can be in-
terpreted as −κ , where κ is the curvature of the two-dimensional 
space, so that their model actually describes a harmonic oscillator 
on the sphere (for λ = −κ < 0) and on the hyperbolic plane (for 
λ = −κ > 0). They presented the solutions of the Euler–Lagrange 
equations in cartesian coordinates, showed that the system is su-
perintegrable and that the Hamilton–Jacobi equations are separable 
in three different coordinate systems. Later on, the quantum ver-
sion of this classical model was also exactly solved in the corre-
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sponding three coordinate systems, wherein the Schrödinger equa-
tion is separable [7,8].

In the present Letter, we deepen our understanding on these 
two-dimensional classical and quantum models by providing an 
update on their analysis in polar coordinates.

In [1], the Euler–Lagrange equations in cartesian coordinates 
were so complicated that they could not be directly solved in a 
simple way. Some particular expressions were then assumed for 
the solutions and the undetermined parameters they contained 
were shown to satisfy some constraints by inserting such expres-
sions in the equations. Here we plan to prove that, in contrast, the 
Euler–Lagrange equations in polar coordinates simplify consider-
ably, so that their solutions can be systematically derived.

Furthermore, in the solutions of the quantum model in po-
lar coordinates [8], the precise nature of the classical orthogonal 
polynomials entering the bound-state radial wavefunctions was not 
determined. We will complete this analysis here, thereby extend-
ing to two dimensions a recent study [10], wherein the quantum 
one-dimensional model of [12] and [13] was re-examined.

2. Solutions of the Euler–Lagrange equations in polar 
coordinates

In cartesian coordinates x, y, the Lagrangian of [1] can be writ-
ten as

L = 1

2

1

1 + λ(x2 + y2)
[ẋ2 + ẏ2 + λ(xẏ − yẋ)2]

− 1

2

α2(x2 + y2)

1 + λ(x2 + y2)
, (1)
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where λ may be positive or negative and α is some real con-
stant that we may assume positive. In polar coordinates, it can be 
rewritten as

L = 1

2

(
ṙ2

1 + λr2
+ J 2

r2

)
− 1

2

α2r2

1 + λr2
, (2)

where the angular momentum J = xẏ − yẋ = r2ϕ̇ is a constant of 
the motion.

Considering now the Euler–Lagrange equations, we get a single 
differential equation to solve, namely

r̈ − λr

1 + λr2
ṙ2 + α2r

1 + λr2
− J 2 1 + λr2

r3
= 0, (3)

since the constancy of J ensures that the other equation with re-
spect to ϕ is automatically satisfied. To solve (3), we proceed in 
two steps.

First, on setting ṙ = p(r), we obtain a first-order equation 
for p2,

dp2

dr
− 2λr

1 + λr2
p2 + 2α2r

1 + λr2
− 2 J 2 1 + λr2

r3
= 0, (4)

whose general solution is given by

p2(r) = C(1 + λr2) − J 2

r2
+ α2

λ
− λ J 2, (5)

in terms of some integration constant C . Second, from (5), we get 
the differential equation

2dt = dr2

√
a + br2 + cr4

,

a = − J 2, b = C + α2

λ
− λ J 2, c = Cλ, (6)

which can be easily integrated by taking into account the sign of 
the discriminant � = 4ac − b2 whenever c �= 0 [14]. The solutions 
for t = t(r2) can then be inverted to yield r2 = r2(t).

Finally, the integration of the first-order differential equation 
ϕ̇ = J/r2(t) [14] provides the functions ϕ = ϕ(t) for J �= 0 in terms 
of some constant K (since for J = 0, ϕ remains constant).

To write some physically-relevant results, it is worth observing 
that the value of the integration constant C is directly related to 
the energy E of the system. The latter is indeed given by

E = 1

2

1

1 + λr2

[
ṙ2 + α2r2 + J 2

r2
(1 + λr2)

]
(7)

and insertion of (5) in (7) leads to

E = 1

2
C + α2

2λ
or C = 2E − α2

λ
. (8)

On the other hand, Eq. (7) can be rewritten as

E = 1

2

ṙ2

1 + λr2
+ V eff(r), V eff(r) = 1

2

α2r2

1 + λr2
+ J 2

2r2
, (9)

where the constancy of J allows us to group the term J 2/(2r2), 
coming from the kinetic energy, with the potential V (r) =
α2r2/[2(1 + λr2)] to define an effective potential V eff(r).

The possible values of E , and consequently of C , are determined 
by the behaviour of V eff(r), where for λ > 0, r varies on the inter-
val (0, +∞), while for λ < 0, it is restricted to 

(
0,1/

√|λ|). Accord-
ing to whether J = 0 or J �= 0, V eff(r) goes to 0 or +∞ for r → 0. 
On the other hand, V eff(r) goes to α2/(2λ) for r → ∞ if λ > 0 or 
to +∞ for r → 1/

√|λ| if λ < 0. Moreover, it can be easily shown 
that for J �= 0, V eff(r) has a minimum V eff,min = 1

2 | J |(2α − λ| J |)

Fig. 1. Plot of V eff(r), α = 3, λ = 1, as a function of r for J = 0 (dashed line) and 
J = 1 (solid line).

Fig. 2. Plot of V eff(r), α = 2, λ = −1, as a function of r for J = 0 (dashed line) and 
J = 1 (solid line).

at rmin = √| J |/(α − λ| J |) ∈ (0, +∞) or 
(
0,1/

√|λ|) (according to 
which case applies). Note that in the λ > 0 case, such a minimum 
only exists for J values such that | J | < α/λ, thereby showing that 
bounded trajectories are restricted to low angular momentum val-
ues. It is worth pointing out that such a limitation on bounded 
motions for λ > 0 was not reported in [1] and that for J = 0, one 
may set V eff,min = 0. In Figs. 1 and 2, some examples are plotted 
for λ > 0 and λ < 0, respectively.

The restrictions on the constants C , c, and � = −(2E + λ J 2 −
2α J )(2E +λ J 2 + 2α J ) of Eq. (6) for each energy domain are given 
by

(i) If λ > 0 and V eff,min < E < α2/(2λ)

or if λ < 0 and V eff,min < E < +∞,

then −(α − λ| J |)2/λ < C < 0, c < 0, and � < 0;
(ii) If λ > 0 and E = α2/(2λ), then C = 0 and c = 0;

(iii) If λ > 0 and α2/(2λ) < E < +∞,

then 0 < C < +∞, c > 0, and � < 0. (10)

For λ > 0 and V eff,min < E < α2/(2λ) or λ < 0, the complete 
solution is given by

r2 = A sin(2ωt + φ) + B, B − A ≤ r2 ≤ B + A,

A = 1

2|λ|ω2

√
[(α − λ J )2 − ω2][(α + λ J )2 − ω2],

B = α2 − λ2 J 2 − ω2

2λω2
, φ ∈ [0,2π),

tan(ϕ − K ) = ω

J

[
B tan

(
ωt + φ

2

)
+ A

]
if J �= 0,

ϕ = K if J = 0, (11)
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