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In this work we investigate the Blume–Capel model with infinite-range ferromagnetic interactions and 
under the influence of a quenched disorder – a random crystal field. For a suitable choice of the random 
crystal field the model displays a wealth of multicritical behavior, continuous and first-order transition 
lines, as well as re-entrant behavior. The resulting phase diagrams show a variety of topologies as a 
function of the disorder parameter p. A comparison with recent results on the Blume–Capel model in 
random crystal field is discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been increasing interest in the multi-
critical behavior of disordered systems. Special attention has been 
given to models with the inclusion of random fields, in the case of 
disordered magnetic systems, both for theoretical interest and also 
for its correspondence with the experimental results [1]. Among 
those models, the Blume–Capel model [2,3] and some of it ex-
tensions have received a lot of attention. The Blume–Capel is it-
self an extension of the classical Ising model for spin-1 which 
takes into account the effect of a local crystal field anisotropy. Its 
phase diagram displays a continuous transition line which meets 
a first-order transition line at a tricritical point [4]. From the the-
oretical point of view a particularly interesting question is how 
such phase diagrams are changed under the effect of quenched 
randomness [5–8]. Because of that, Kaufman and Kanner [9] stud-
ied the Blume–Capel model under a random magnetic field and 
obtained a rich variety of phase diagrams. The effect of random 
crystal field has been considered by several authors [10–26]. Be-
sides the approach adopted, in some of these works the choice 
of the random crystal field distribution is also different. However, 
in all cases the phase diagrams display a rich behavior with the 
presence of critical and coexistence lines, as well as many mul-
ticritical points and re-entrant phenomena. In their recent work, 
Salmon and Tapia studied an infinite-range Blume–Capel under a 
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quenched disorder crystal field following a superposition of two 
Gaussian distributions and classified the phase diagrams according 
to their topology (scenario) [21]. Recently, the effect of a spe-
cial discrete random crystal field distribution was investigated by 
the pair approximation approach [26]. The same type of random 
crystal field distribution had already been investigated by the real-
space renormalization-group approach, as well as by the mean-
field approximation [18,20]. However, as far as the results can 
be compared they lead to qualitatively different phase diagrams 
for low temperature. For instance, while the pair approximation 
predicts first-order transitions between the paramagnetic and fer-
romagnetic at zero temperature as in Fig. 2 of [26], the conclusion 
of the single-site mean-field approximation is that the ground state 
is always ordered according to Eq. (3) of [20]. Thus, we decided 
to investigate this point further by considering an exactly soluble 
version of the Blume–Capel model under the random crystal field 
distribution considered by [18,20,26]. Besides, we are also inter-
ested in investigation the possible topologies for phase diagrams 
predicted by this sort of mean-field treatment along the lines of 
the continuous distribution started by [21]. Finally, since the re-
entrant phenomena in random spin-1 models have attracted some 
recent interest (see, for instance, [27] and references therein), our 
results may give some hint as to what expect in more disordered 
system as in the case of the Blume–Capel spin-glass under a ran-
dom crystal field [28].

This work is organized as follows. In Section 2 we introduce 
the Blume–Capel model under the presence of a random crystal 
field and obtain the basic equations. In Section 3 we present the 
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obtained phase diagrams. Finally, we present our conclusions in 
Section 4.

2. The model

Let us consider the infinite-range Blume–Capel model described 
by the following Hamiltonian:

H = − J

2N

N∑
(i, j)

Si S j +
N∑

i=1

�i S2
i , (1)

where N is the number of spins and Si = −1, 0, +1, for all sites 
i = 1, · · · , N . The first sum runs over all pairs of spins (i, j). The 
ferromagnetic coupling takes the form J/N to account for the 
free energy extensivity. The random crystal fields �i are quenched 
variables, independent and identically distributed according to the 
following probability distribution:

P (�i; D, p) = pδ(�i − D) + (1 − p)δ(�i + D) . (2)

As far as we know, the above probability distribution was in-
troduced by Branco and Boechat [18] and Branco [20] and has 
been recently considered by Lara [26]. The transformation �′

i =
(�i + D)/2 leads to the probability distribution mostly used in 
the study of the Blume–Capel in discrete random crystal field as, 
for instance, in [10,13], but also produces a slight change in the 
Hamiltonian. The general properties of the phase diagram should 
not depend on the particular form of the discrete random crystal 
field distribution. Thus, besides our interest in making comparison 
with known results [18,20,26], another reason for our choice of the 
probability distribution is the symmetry inherent in Eq. (2) which 
can be expressed by:

P (�i; D, p) = P (�i;−D,1 − p). (3)

Therefore, in order to determine phase diagrams for fixed values 
of p it is sufficient to consider the domain defined by D ≥ 0 and 
1/2 ≤ p ≤ 1. By symmetry considerations we can obtain the cor-
responding phase diagrams for 0 ≤ p ≤ 1/2 by a mapping from 
1/2 ≤ p ≤ 1.

Using the replica method (see Appendix A for details), we ob-
tain the free-energy density, in units of J :

f (t,d, p;m) = 1

2
m2 − pt ln [1 + 2 exp(−d/t) cosh (m/t)]

− (1 − p) t ln [1 + 2 exp(d/t) cosh (m/t)] , (4)

where t = kBT / J , d = D/ J , and m is the magnetization. The equa-
tion of state can be obtained by taking the minimum of the above 
free-energy functional with respect to m, which leads to

m = 2p sinh (m/t)

exp(d/t) + 2 cosh (m/t)
+ 2 (1 − p) sinh (m/t)

exp(−d/t) + 2 cosh (m/t)
. (5)

The thermodynamic properties of the model are completely de-
termined by Eqs. (4) and (5) which, in turn, reveals clearly the 
symmetry expressed by Eq. (3). For given values of p, t and d the 
physical solution corresponds to the global minima of the free-
energy density. Thus, for a given value of p we can determine the 
d–t phase diagram. Eq. (5) always has a trivial solution correspond-
ing to the paramagnetic phase P, with m = 0. The corresponding 
paramagnetic free-energy density is given by

f P (t,d, p) = −pt ln [1 + 2 exp(−d/t)]

− (1 − p) t ln [1 + 2 exp(d/t)] . (6)

Besides the paramagnetic solution, Eq. (5) may present distinct 
non-trivial solutions, corresponding to different ferromagnetic 
phases.

Let us consider the ground state. For d > 0, the free-energy den-
sity f P for the paramagnetic solution becomes

f0 ≡ f P (t = 0,d, p) = − (1 − p)d. (7)

Apart from the paramagnetic phase, we find two ferromagnetic 
solutions. The first type (F1) is characterized by m1 = 1, with the 
free energy density given by:

f1 ≡ f (t = 0,d, p;m = 1) = −1

2
+ (2p − 1)d, for d < 1. (8)

The second type of ferromagnetic solution (F2) is given by m2 =
1 − p, with the free energy density given by:

f2 ≡ f (t = 0,d, p;m = 1 − p) = −1

2
(1 − p)2 − (1 − p)d,

for d ≥ 1 − p. (9)

From Eqs. (7) and (9), we note that f2 ≤ f0 wherever the F2
phase exists. Moreover, from the analysis of Eqs. (7)–(9) we find 
that the ground state consists of the F1 phase for d < d0, while 
for d > d0 it corresponds to the F2 phase. At zero temperature, 
t = 0, we determine a first-order transition between the F1 and F2
phases at d0 given by

d0 = 1 − 1

2
p. (10)

Therefore, except for p strictly equals to 1 the paramagnetic phase 
is never realized at zero temperature.

In general the d–t phase diagrams for a given value of p can be 
determined numerically from Eqs. (4) and (5). However, the sta-
bility of the paramagnetic phase can be determined analytically. 
From this analysis we can find critical frontiers as well as possible 
tricritical points. For this purpose, let us introduce the following 
parametrization:

a = exp(d/t). (11)

Nearby a continuous transition from ferromagnetic to paramag-
netic phase, we consider a small magnetization m � 0 and write 
a Landau-like expansion for the free energy density:

f (t,d, p;m) = A0 + A2m2 + A4m4 + A6m6 + · · · . (12)

The coefficient A0 corresponds to f P (t, d, p) given by Eq. (6), while 
the remaining coefficients are given by:

A2 = 1

2
− p

2t
q − (1 − p)

2t
r, (13)

A4 = − p

24t3
(1 − 3q)q − (1 − p)

24t3
(1 − 3r)r, (14)

A6 = − p

720t5
(1 − 15q + 30q2)q

− (1 − p)

720t5
(1 − 15r + 30r2)r, (15)

where q and r are given by

q = 2

2 + a
, r = 2a

2a + 1
. (16)

These new parameters q and r are not independent and can be 
interpreted as the density of spins Si = ±1 in the paramagnetic 
phase for the pure cases p = 1 and p = 0, respectively.

A continuous transition line from the ferromagnetic to param-
agnetic phase is given by

A2 = 0, while A4 > 0.
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