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Design of a large-scale quantum computer has paramount importance for science and technologies. 
We investigate a scheme for realization of quantum algorithms using noncomposite quantum systems, 
i.e., systems without subsystems. In this framework, n artificially allocated “subsystems” play a role of 
qubits in n-qubits quantum algorithms. With focus on two-qubit quantum algorithms, we demonstrate 
a realization of the universal set of gates using a d = 5 single qudit state. Manipulation with an 
ancillary level in the systems allows effective implementation of operators from U(4) group via operators 
from SU(5) group. Using a possible experimental realization of such systems through anharmonic 
superconducting many-level quantum circuits, we present a blueprint for a single qudit realization 
of the Deutsch algorithm, which generalizes previously studied realization based on the virtual spin 
representation (Kessel et al., 2002 [9]).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Building of a large-scale quantum computer is one of the most 
challenging domains of quantum information technologies [1–6]. 
This new generation of computational devices demonstrates a po-
tential to outperform their classical counterparts greatly [2–6]. 
Examples include searching an unsorted database [5] as well as 
integer factorization and discrete logarithm problems [6] to name 
a few.

From a physical point of view, a quantum computer is an open 
quantum system with a large number of subsystems, which play a 
role of information units. These systems can be realized via a va-
riety of physical platforms. Quantum states of a composite system 
are described by the density operator in the abstract Hilbert space 
being a product,

H = HA ⊗HB ⊗ · · · ⊗HZ , (1)

of the Hilbert spaces of the physical subsystems. A crucial re-
quirement to such systems as platforms for quantum information 
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processing is scalability with respect to number of qubits [7]. Suc-
cess in scalability of the systems results in increasing the number 
of subsystems making the problem of achieving a suitable degree 
of control more and more challenging.

However, a set of required features for quantum technologies is 
available not only in composite systems but in noncomposite sys-
tems as well [8–14]. Recent experimental study of photonic qutrit 
states demonstrates fundamentally non-classical behavior of non-
composite quantum systems [10]. The idea behind this result dates 
back to the Kochen–Specker theorem [15], which provides certain 
constraints on hidden variable theories, that could be used to ex-
plain probability distributions of quantum measurement outcomes.

The Hilbert space of noncomposite systems is arranged in the 
opposite way to (1), however it is equivalent to that mathemati-
cally: it can be represented in form (1), i.e., as a product of the 
Hilbert spaces of abstract subsystems. Investigations of informa-
tion and entropic characteristics of noncomposite quantum sys-
tems [11–14] have confirmed possibilities of their applications in 
quantum technologies. Furthermore, a potential gain from the use 
of noncomposite many-level quantum systems has been demon-
strated in quantum coin-flipping and bit commitment [16], proto-
cols for quantum key distribution [17–20], quantum information 
processing [8,9,21–24] and clock synchronization algorithms [25].

Remarkably, these studies are supported by substantial progress 
in experiments with many-level states of photons [26], trapped 
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Fig. 1. Mapping of a five-level quantum system on a two-qubit quantum system.

ions [27], NMR setups [24], and superconducting quantum circuits 
[28–32].

In the present work, we stress on the implementation of quan-
tum algorithms via noncomposite quantum systems with focus 
on their realization via anharmonic superconducting many-level 
quantum circuits using addressing to a particular transition. Our 
consideration is valid for an arbitrary realized many-level quantum 
system. However, we focus on many-level superconducting circuits 
due to significant progress in their design [28–32].

These advances allow to create highly tunable artificial atomic 
systems with possibilities to reproduce interesting quantum effects 
[33–41] as well as employ them for quantum computing [42–46]
and simulation [47].

Recent experiment with a superconducting four-level quantum 
circuit has explored “hidden” two-qubit dynamics [31]. Therefore, 
it is interesting to study possibilities of demonstration computa-
tional speed-up from single qudit realization of oracle-based algo-
rithms using superconducting many-level circuits.

Here, we consider a qudit state with d = 5, where four levels 
are used for storage of two-qubit quantum states and an ancillary 
fifth level is employed for effective realization of operators from 
U(4) group via operators from SU(5) group (see Fig. 1). We demon-
strate that this trick makes it possible to construct the universal 
set of two-qubit quantum gates consisting of Hadamard, π/8 and 
controlled NOT gates [48].

The main emphasis of our work is on a single qudit realization 
of one of the first oracle-based quantum algorithm — the Deutsch 
algorithm [49]. Employment of the ancillary level is a novel fea-
ture compared to our previous study [50], where we considered 
a d = 4 qudit state and proposed a scheme for Hadamard gates 
from the universal set only, as well as with previously studied re-
alization of the Deutsch algorithm [9]. The suggested single qudit 
realization of the Deutsch algorithm differs from previously stud-
ied [9], where the operated physical environment allowed to apply 
arbitrary quantum gates without using of ancillary levels.

Our paper is organized as follows. In Section 2, we consider a
correspondence between a qudit state with d = 5 and a two-qubit 
quantum system as well as propose scheme for the universal set of 
quantum gates for two-qubit algorithms using noncomposite quan-
tum systems. Using the universal set of quantum gates, we present 
a realization for a single qudit realization of the Deutsch algorithm 
in Section 3. We conclude the paper and summarize results in Sec-
tion 4.

2. Universal set of gates

The composite representation of noncomposite quantum d-level 
systems with d > 2 corresponds to any possible mapping of its 
Hilbert space on a tensor product of several Hilbert spaces, which 
correspond to abstract subsystems.

In this paper, we consider the five-dimensional Hilbert space 
of anharmonic superconducting many-level quantum circuit (see 
Fig. 1). The correspondence between the stationary energy states 
and two-qubit logic basis can be presented as follows:

|0〉 → |0〉A ⊗ |0〉B , |1〉 → |0〉A ⊗ |1〉B ,

|2〉 → |1〉A ⊗ |0〉B , |3〉 → |1〉A ⊗ |1〉B . (2)

This mapping resembles the virtual spin representation suggested 
in Ref. [8]. We assume that the population of the fifth level is 
negligible and we keep them in consideration only for the imple-
mentation of quantum gates.

Due to above-stated assumptions, the state of the system, writ-
ten in the original basis, can be presented as

ρ ≡ ρAB =

⎡
⎢⎢⎢⎣

ρ00 ρ01 ρ02 ρ03 0
ρ∗

01 ρ11 ρ12 ρ13 0
ρ∗

02 ρ∗
12 ρ22 ρ23 0

ρ∗
03 ρ∗

13 ρ∗
23 ρ33 0

0 0 0 0 0

⎤
⎥⎥⎥⎦ , (3)

while the states of allocated “subsystems” A and B turn to have a 
form

ρA =
[
ρ00 + ρ11 ρ02 + ρ13
ρ∗

02 + ρ∗
13 ρ22 + ρ33

]
,

ρB =
[
ρ00 + ρ22 ρ01 + ρ23
ρ∗

01 + ρ∗
23 ρ11 + ρ33

]
, (4)

where the matrices are written in their corresponding computa-
tional bases.

We assume that our toolbox the system manipulation consists 
of applying θ -pulses on the transition between arbitrary pair of 
energy levels. In general, it can be done via coupling of a supercon-
ducting many-level quantum circuit to an external resonant field 
[28–32].

The corresponding elementary procedure turns to be rota-
tion around X-axis of the “Bloch sphere” of the particular two-
dimensional Hilbert subspace:

R( jk)
X (θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]( jk)

⊕ I
( jk)
3 , (5)

where the matrix superscript j, k ∈ {0, 1, 2, 3, 4} indicates that it 
is written in the basis {| j〉, |k〉}, ⊕ stands for the direct sum, In

stands for the identity operator in n-dimensional Hilbert space and 
superscript ( jk) indicates that the identity operator acts in the or-
thogonal complement (Span{| j〉, |k〉})⊥ , then R( jk)

X (θ) acts in the 
whole original five-dimensional Hilbert space.

The appropriate sequence of rotations around X-axis results in 
the effective rotation around Y -axis:

R( jk)
Y (θ) =

[
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

]( jk)

⊕ I3
( jk)

= R( jl)
X (π) R(kl)

X (θ) R( jl)
X (3π) , (6)

where the l-th level is one from ( jk). We note that (5) and (6)
correspond to SU(5) group of unitary operations with the unit de-
terminant.

It is well-known [48] that for the case of two-qubit systems 
the universal set of gates consists of one-qubit Hadamard and 
π/8-gates,

H = 1√
2

[
1 1
1 −1

]
, T =

[
1 0
0 exp (iπ/4)

]
, (7)

together with two-qubit controlled NOT gates,

U (A→B)
CNOT =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ , U (B→A)

CNOT =
⎡
⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎦ . (8)
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