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In this Letter, the assumption of two simple postulates is shown to give rise to a Hall viscosity term 
via an action principle formulation. The rationale behind the two postulates is clearly delineated, and 
the connections to an intrinsic angular momentum are emphasized. By employing this methodology, it 
is shown that Hall viscosity appears in a wide range of fields, and the interconnectedness of quantum 
Hall systems, plasmas and nematic liquid crystals is hypothesized. Potential avenues for experimental and 
theoretical work arising from this cross-fertilization are also indicated.
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1. Introduction

The Navier–Stokes equations have been in existence for nearly 
200 years, and are familiar to nearly all physicists. One of the 
central features of the Navier–Stokes equations is the existence of 
viscosity and the corresponding viscous stress tensor. A particularly 
elegant derivation of the same can be found in [1]. By building in 
rotational and time invariance, it can be shown that the viscous 
stress tensor has the form

Nijkl = η
(
δikδ jl + δilδ jk

) +
(

ζ − 2

d
η

)
δi jδkl, (1)

where d is the number of spatial dimensions of the system [2]. 
The tensor is symmetric under (i j) ↔ (k l). If one breaks the time 
invariance symmetry, it is also possible to have a component that 
is odd, i.e. it has the property N A

ijkl = −N A
kli j . We denote this com-

ponent by N A and the symmetric component by N S . In general, 
N A = 0 if rotational invariance is still to be preserved, but the case 
with d = 2 is special. By breaking parity (and time) invariance, it 
can be shown that a non-zero tensor N A of the form

N A
ijkl = ηH

(
εilδkj − εkjδil

)
(2)

can be constructed [3] that retains rotational invariance. The coef-
ficient ηH has been labeled the Hall viscosity or the odd viscosity 
[2] in scientific literature, and we shall adopt the former conven-
tion.

In this Letter, we shall show that the Hall viscosity can arise 
in a diverse array of unconnected fields such as quantum Hall sys-
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tems, plasmas and nematic liquid crystals. We shall demonstrate 
that these fields are united through the existence of intrinsic an-
gular momentum (driven by various mechanisms), allowing for 
the existence of a common mathematical structure. We commence 
with a brief summary of these three fields, then present the math-
ematical derivation, and identify the crucial physics questions that 
arise along the way. These questions are resolved subsequently, 
and we shall point out the similarities (and the differences) be-
tween these seemingly disparate fields.

The importance of Hall viscosity in the context of condensed 
matter was first noticed in [4], where it was proved that the co-
efficient ηH was proportional to the magnetic field in quantum 
Hall systems. In a wide variety of systems, it has been shown that 
the ratio of the Hall viscosity to the density gives rise to a con-
stant, which has topological properties, and an intuitive physical 
interpretation – it represents the intrinsic angular momentum per 
particle [5,6]. The tensor N A also possesses several other unusual 
properties, the chief of which is that it serves as a dissipationless 
tensor, i.e. it conserves energy. Hall viscosity has been studied ex-
tensively in current times, in a wide range of contexts, and we 
refer the reader to [7,8] for discussions of the same. In particular, 
it has been explored in the context of gauge/gravity duality [9], 
quantum Hall states [5,10], topological insulators [11], the Wess–
Zumino term [12], and several others. In principle, the effects aris-
ing from Hall viscosity should be detectable via inhomogeneous 
electric fields or photon X-ray diffraction [7]. However, it is note-
worthy that no such experimental realizations do actually exist 
thus far.

Let us now turn our attention to a field of physics that has 
been, and still is, studied extensively on an experimental basis – 
plasma physics. Since plasmas consist of charged particles, which 
exhibit the well-known phenomenon of Larmor gyration, effects 
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arising from this phenomenon need to be taken into account when 
constructing physical models. These models are collectively de-
scribed as Finite Larmor Radius (FLR) models, and are usually 
studied in the context of kinetic theory. These effects also perco-
late down to the level of fluid theories, described in the seminal 
works [13] and [14]. Of these, Braginskii’s work [14] has been used 
extensively in modeling FLR effects, and numerical experiments es-
tablishing its successes and limitations are well documented.

A third area, unconnected to plasmas, that we shall explore in 
this Letter is the field of nematodynamics, which is commonly 
used in modeling liquid crystals. This field arose from the cen-
tral works of Ericksen [15] and Leslie [16], collectively dubbed 
the Leslie–Ericksen (LE) equations. The LE equations are akin to 
the usual hydrodynamic equations, but they contain an additional 
dynamical variable, the director n, that describes the direction of 
molecular alignment. The director introduces additional degrees of 
freedom, leading to the presence of a non-zero rotational kinetic 
energy, amongst other effects. To model the additional degrees of 
freedom, the need for spin (in the classical sense) as an indepen-
dent dynamical variable was stated in [17], and a set of complete 
equations were presented in [18], which reduced to the LE equa-
tions in a suitable limit. The connections between hydrodynamical 
variants of liquid crystals, and their connections with conventional 
hydrodynamics have been explored in several works, see e.g. [19,
20].

The outline of the paper is as follows. In Section 2, we shall 
construct a simple action, and derive the relevant equations of mo-
tion. We also demonstrate therein how the aforementioned areas 
of physics can be treated on a unified footing through simple phys-
ical principles. We present the associated Hamiltonian formulation 
in Section 3, and discuss potential extensions of our approach. Fi-
nally, we summarize our results in Section 4. The genesis of our 
work, particularly in the context of intrinsic angular momentum, 
stems from the work undertaken in [21].

2. A unified action principle formulation

We commence with a construction of the action, and a deriva-
tion of the underlying equations of motion. Next, we address two 
important postulates used in constructing the action, and show 
how they arise as a result of concrete physical reasoning.

2.1. The action principle and the equations of motion

We shall choose to work with an action principle formalism, 
and employ the notation used in fluids and plasmas outlined in 
[22]. We shall work in two (spatial) dimensions and assume Carte-
sian geometry. Our starting point must be the definition of the 
relevant dynamical variables. It is clear that the bulk velocity of 
the fluid v, and the density ρ constitute two such variables. In ad-
dition to ρ , we also specify a second thermodynamic variable – the 
entropy s. As our fourth variable, we choose �, endowed with the 
dimensions of angular momentum density. It must be noted that �
may serve as an independent dynamical variable, or be a thermo-
dynamic function of ρ and s. It is natural to wonder as to how and 
why � arises, and we dub this Issue I, and return to it eventually.

There are two common methods for constructing action princi-
ples. The first is to work in a Lagrangian setting, wherein the fluid 
is modeled as a collection of ‘particles’ and the only time-varying 
field is the particle trajectory q(a, t) with ‘a’ serving as the con-
tinuum label. The other fields, such as density, entropy, etc., are 
tied into the fluid ‘particle’ via suitable conservation laws. A sec-
ond strategy entails the use of the Eulerian picture, which is the 
one that we shall use, owing to its higher usage in most fields of 
physics. In the Eulerian picture, the position r is fixed, and all the 
fields such as density, entropy, etc. are functions of r and t . When 

working within the Eulerian picture, an additional tool is required 
– constrained (or induced) variations. The reason stems from the 
fact that some of the Eulerian fields obey inherent conservation 
laws. Hence, when one resorts to the principle of least action and 
performs the variation, some of these fields must be varied in a 
constrained manner, i.e. the variations must preserve the under-
lying conservation laws. A detailed description of this method is 
presented in [23], and was recast into a more mathematical form 
by [24], who also dubbed it the Euler–Poincaré method.

Next, we need to decide upon the relevant conservation laws 
for these variables. Note that the constraint of mass conservation 
leads to the density obeying the continuity equation, i.e. one has

∂ρ

∂t
+ ∇ · (ρv) = 0. (3)

Similarly, the specific entropy must be conserved along a fluid 
streamline, implying that it must be advected along with the flow. 
As a result, we note that

∂s

∂t
+ v · ∇s = 0. (4)

Eqs. (3) and (4) possess definitive geometric meanings: they repre-
sent the Lie dragging of a scalar density and a scalar respectively 
[25]. In some cases, the entropy density σ = ρs is employed, al-
lowing us to treat it on the same footing as the density, and giving 
rise to a conservation law akin to (3). We see that this is consistent 
with the physical intuition that ρ and s are scalars, and that the 
former also represents a density. Alternatively, when seen in the 
light of two dimensions, the equations for ρ and s can easily be 
interpreted as the Lie-dragging of a 2-form and a 0-form (in 2D) 
respectively [26]. We need to now determine the conservation law 
for �. As it possesses the units of angular momentum density, we 
may postulate that it possesses a similar conservation law to that 
of density, i.e. akin to mass conservation, we introduce an angular 
momentum conservation law. Hence, we note that it obeys

∂�

∂t
+ ∇ · (�v) = 0. (5)

We note that � serves either as an independent dynamical vari-
able, or as a function of ρ and s and in either case is independent 
of the velocity v. Hence, it is very different from the usual angu-
lar momentum density r × (ρv) and can thus be described as an 
intrinsic angular momentum.

Each of these variables, along with v, are functions of r and t . 
We can now construct the appropriate hydrodynamic action by 
writing down the appropriate Lagrangian density:

LH = 1

2
ρv2 − ρU (ρ, s) . (6)

The first term represents the kinetic energy density, and the sec-
ond represents the internal energy of the fluid, expressed in terms 
of the thermodynamic variables ρ and s. The Lagrangian density 
(6) has been shown to give rise to the ideal fluid equation of mo-
tion [22]. To this term, we shall now add a new one, and the final 
Lagrangian density is given by

L = LH − 1

2
εki vi∂k�, (7)

where εki is the 2D Levi-Civita tensor. The inclusion of the addi-
tional term appears purely phenomenological, and we label this 
Issue II, and provide a discussion as to why it is justified on phys-
ical grounds. Note that 

∫
εki vi∂k� d2r = − 

∫
εki�∂k vi d2r since we 

have integrated by parts, and neglected the boundary term. We 
shall repeat this procedure in this Letter consistently henceforth.

In order to obtain the Euler–Lagrange equations of motion, we 
need to vary the action S = ∫

L d2r dt but the variation must con-
stitute a constrained variation; in other words, the variation with 
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