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The Kitaev–Heisenberg model on the honeycomb lattice is investigated in two cases: (I) with the Kitaev 
interaction between the nearest neighbors, and (II) with the Kitaev interaction between the next nearest 
neighbors. In the full parameter range, the ground states are searched by Monte Carlo simulation and 
identified by evaluating the correlation functions. The energies of different phases are calculated and 
compared with the simulated result to show the phase competition. It is observed from both energy 
calculation and the density of states that the zigzag order shows a symmetric behavior to the stripy 
phase in the pure Kitaev–Heisenberg model. By considering more interactions in both cases, the energy 
of zigzag order can be reduced lower than the energies of other states. Thus the zigzag phase may be 
stabilized in more parameter region and even extended to the whole parameter range.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Iridates were much highlighted in recent years since they were 
suggested as promising candidate materials for the topological 
band insulators [1–3]. For hexagonal iridates with general formula 
A2IrO3 (A = Na, Li), the spin–orbit coupling and orbital degen-
eracy could make the exchange interaction highly anisotropic and 
frustrated. The entangled spin and orbital states break the SU(2) 
symmetry of the magnetic Hamiltonian, giving rise to realization 
of exotic spin models. In particular, the Kitaev–Heisenberg (KH) 
model as follows has been proposed to capture the magnetic in-
teractions in the honeycomb iridates [4–6].

H = JHn

∑

〈i, j〉
Si · S j + JKn

∑

〈i, j〉γ
Sγ

i · Sγ
j (1)

where JHn is an isotropic Heisenberg coupling between spins (Si
and S j) on the nearest-neighboring sites (〈i, j〉). JKn is a Kitaev in-
teraction, coupling different spin components (Sx , S y , and Sz) on 
the nearest-neighboring bonds along the three lattice directions, 
where γ = x, y and z labels the direction of the bonds as plot-
ted in Fig. 1(a). The original version of this nearest-neighboring 
Kitaev–Heisenberg (NKH) model with antiferromagnetic (AFM) JHn
and ferromagnetic (FM) JKn presents a spin-liquid state near the 
Kitaev limit, a Néel order close to the Heisenberg limit and a stripy 
phase between them [5,7,8].
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However, the experiments of iridates soon brought a surpris-
ing challenge to this attractive model. A resonant x-ray scattering 
measurement on Na2IrO3 found the evidence of unconventional 
magnetic order at low temperature which showed magnetic Bragg 
peaks at wave vectors consistent with either a stripy or a zigzag 
order. Combining the experimental data with the first-principles 
calculations, the most likely spin structure in the ground state was 
proposed to be the zigzag structure [9]. Then this conclusion was 
verified independently by using inelastic neutron scattering and 
single-crystal neutron diffraction [10,11]. Thus, the zigzag phase, 
which is missed in the original version of the NKH model men-
tioned above, came to the focus. To resolve this problem, one 
effective modification is to extend the original NKH model to its 
full parameter space by considering additional hopping processes 
based on the interorbital t2g –eg hopping. Then the zigzag order 
was found in a previously overlooked parameter range with an FM
JHn and an AFM JKn [12,13]. Another successful modification is 
to include farther interactions beyond the nearest-neighboring ex-
change. It was shown on both classic and quantum levels that the 
zigzag magnetic order may be stabilized by including substantial 
second- and third-nearest-neighboring AFM interactions [14,15].

In addition, different from the NKH model with the Kitaev 
interaction between the nearest-neighboring spins on the hon-
eycomb lattice, the recent investigations showed that the Kitaev 
interaction can also appear between the next-nearest-neighboring 
spins (Fig. 1(b)), namely the next-nearest-neighboring Kitaev–
Heisenberg (NNKH) model, which was obtained in the strong 
interaction limit of a Hubbard model on the honeycomb lattice. 
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Fig. 1. Sketches of the honeycomb lattice for (a) the NKH model and (b) the NNKH 
model. The solid, dashed and dotted white links indicate the nearest-, second-
nearest- and third-nearest-neighboring bonds. The dashed, dot-dashed and dot-
ted black links indicate three kinds of spin-dependent bonds for (a) the nearest-
neighbors and (b) the next nearest-neighbors. Sketches of the typical spin structures 
for (c) F, (d) N, (e) S and (f) Z phases. Open and filled circles correspond to up and 
down directions of spins.

Here the ground state with stripy order was revealed to possess 
some degree of zigzag order [16,17].

Although some efforts have been made, the zigzag order, as an 
important key for the KH model to connect with experiments of 
iridates, still remains controversial up to now. In present work, 
both the NKH and NNKH models are investigated to the full pa-
rameter space to explore the zigzag order and the phase competi-
tion in these systems. In the pure NKH model there are four domi-
nant collinear magnetic phases, namely ferromagnetic (F), Néel (N), 
stripy (S) and zigzag (Z) phases. The symmetric behavior is ob-
served between them. Especially for Z and S phases, the symmetric 
behavior is also reflected on the density of states (DOS). By the en-
ergy calculation, the competition between the dominant magnetic 
phases is discussed in detail. It is revealed that to enhance Z phase 
is to lower the energy of Z order and to suppress other phases, 
which can be realized by considering more neighboring Heisen-
berg interactions in both NKH and NNKH models.

2. Simulation and calculation

To explore the possible ground state on every parameter point, 
the Monte Carlo (MC) simulation is performed on a honeycomb 
lattice of N = 1536 sites with periodic boundary conditions ap-
plied. The system is first evolved by the Metropolis algorithm from 
a relatively high temperature to a very low temperature gradu-
ally. Then, in order to reach the limit of zero temperature, the 
minimization algorithm for energy (E), namely only the proposed 
update with the energy variation not higher than zero can be ac-
cepted, is applied to further push the system to the ground state. 
The final result is obtained by comparing independent data sets 
evolving from different initial states. Based on the ground state ob-
tained, the correlation functions on the nearest-neighboring spins 
(Cn), on the second-nearest-neighboring spins (Cnn) and on the 
third-nearest-neighboring spins (Cnnn) are calculated in the forms 
of

Cn = 〈Si · Si+1〉n (2)

Fig. 2. (Color online) The pure NKH model with JHnn = 0 and JHnnn = 0. (a) The cor-
relation functions Cn , Cnn and Cnnn as functions of ϕ . The four dominant phases F, 
N, S and Z can be identified as shown on the top, where two empty circles repre-
sent the spin liquid states. (b) The ϕ-dependences of the classic energies per site of 
F, N, S and Z phases, namely E F , EN , E S and E Z . The squares show the energies of 
the ground states obtained from MC simulation (EMC ).

Cnn = 〈Si · Si+2〉nn (3)

Cnnn = 〈Si · Si+3〉nnn (4)

On the other hand, as a supplement, the DOS in energy and 
magnetization (E&M) space is evaluated by performing Wang–
Landau (WL) simulation on a honeycomb lattice of N = 24 spins 
with periodic boundary conditions assumed, where M denotes 
the magnetization in the direction of z-axis. The continuous E&M
space is discretized by introducing bins of �E = 0.25 and �M =
0.25 [18,19]. At the beginning of simulation, a preliminary cal-
culation of WL algorithm is run to delimit the practical scope of 
available states [20]. Then the standard WL algorithm is carried 
out by simply ignoring those bins outside of the determined do-
main of available states [21]. We reduce the modification factor 
( f ) according to the recipe f i+1 = f 1/2

i till the final modification 
factor reaches ffinal = 1.0000019. For every f , the histogram for 
all possible E and M is required not less than 80% of the av-
eraged histogram. To give a better comparison between DOSs on 
different parameter points, we extract the E&M map from the DOS 
obtained, which is the profile of DOS on E&M plane, showing the 
boundary of all the possible states in the E&M space [22].

3. Results and discussion

3.1. The NKH model extended to full parameter range

First, the pure NKH model of Eq. (1) is simulated in the pa-
rameter space of JHn and JKn , which is extended in a symmetric 
way by parameterizing JHn = cosϕ and JKn = sinϕ . The ratio of 
JHn to JKn is considered to its whole range by scanning ϕ from 
0 to 2π . Based on the ground states obtained from MC simula-
tion, the correlation functions show four distinct ranges as plot-
ted in Fig. 2(a), in which four collinear magnetic phases can be 
identified, namely F(ϕ : 0.75π ∼ 1.5π), N(ϕ : 1.75π ∼ 2π ∼ 0.5π), 
Z(ϕ : 0.5π ∼ 0.75π) and S(ϕ : 1.5π ∼ 1.75π), consistent well with 
the previous investigation [12]. It is noteworthy that the correla-
tion functions show the characterized values for these four phases 
as summarized in Table 1, which can be used to distinguish and 
monitor the phases.
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