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Under the view of the time-dependent Ginzburg–Landau theory we have investigated the penetration of 
the magnetic field in the type II superconductors. We show that the single vortices, situated along the 
borderline, between the normal region channel and the superconducting region, can escape to regions 
still empty of vortices. We show that the origin of this process is the repulsive nature of vortex–vortex 
interaction, in addition to the non-homogeneous distribution of the vortices along the normal region 
channel. Using London theory we explain the extra gain of kinetic energy by the vortices situated along 
this borderline.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1994 a new phenomenon was discovered, the appearance 
of macro-turbulence in type II superconductors. V.K. Vlasko-Vlasov 
et al. showed that during the remagnetization process of high-Tc

superconductors, in some range of temperature, the vortices con-
dense into drops of increasing density, which then move along 
the sample. They believed that this process appears only when 
a noticeable creep takes place [1]. This process is a turbulence 
relaxation. The same phenomenon was studied by Koblischka et 
al. [2]. They showed that when a reversed external magnetic field 
is applied to a remnant state, droplets of vortices are formed and 
escape from the flux front. These vortices move along the sample. 
They concluded that, this phenomenon is due to the heat released 
in the vortex–antivortex annihilation process. In 2009, I.V. Voloshin 
et al. [3] studied the macro-turbulent instability in a YBCO single 
crystal. In their experiment the turbulence manifested itself by the 
advance of the magnetization-reversal front into the interior of the 
sample. In all the above quoted papers, there are vortices moving 
along the superconducting region, which leaves the normal region 
channel inside the sample.

In the present article, a similar effect is investigated. Vortices 
situated along the borderline, between the normal region chan-
nel and superconducting region, can escape to regions that are 
still empty of vortices. Note that these superconducting regions 
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are devoid of defects, pinning centers, inversion of applied mag-
netic field, or any other effect. Our aim here is to explain that this 
phenomenon is produced by the non-homogeneous distribution of 
the vortices along the normal region channels, and also because 
of repulsion interaction between vortices. Both effects are strongly 
related to the size of the sample. Related experimental work was 
published in Ref. [4], where the authors studied a continuum and 
also the discrete distribution of the magnetic flux in large meso-
scopic superconductor disk.

The textbooks classify superconductors by the ratio of the mag-
netic penetration depth λ to the coherence length ξ . According to 
the Ginzburg–Landau (GL) theory the type I and type II supercon-
ductivity interchange when the GL parameter κ = λ/ξ reaches the 
critical value κc = 1/

√
2 [5–7]. However, several experimental and 

theoretical evidences revealed that the interchange occurs along a 
finite interval around Bogomolny critical point κc . The Bogomolny 
point is infinitely degenerated with respect to vortex spatial con-
figuration [8,9]. Very close to this point a long-range attraction of 
vortices appears, which is responsible for the new patterns where 
the Meissner and Abrikosov-lattice domains coexist. It is often re-
ferred to as type II/1 state, and recently it was referred to as type 
1.5 superconductor [10–15].

For type II superconductors the penetration of magnetic field 
occurs via quantum of magnetic field and it is possible to enu-
merate the number of vortices in the sample [16,17]. For large 
samples, the magnetic field penetration occurs, apparently, as “av-
erage” flux density distribution. It can be explained by the Bean 
model, since in the Bean model the penetration of the magnetic 
field seems to be continuous [18–22]. New phenomena have been 
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appearing for different materials. For instance, dendrites in large 
sample of MgB2 [25], coexistence of Meissner and Abrikosov state 
in small sample of MgB2 [26], avalanches in Nb film, [27], dendritic 
flux in YBaCuO films [28], fractional vortex states in two-band 
mesoscopic superconductors [29–31], the broken-symmetry vortex 
states, and fractional-flux vortex states with broken time-reversal 
symmetry [32].

The use of the high-resolution magneto-optical technique has 
permitted detailed investigation of the magnetic flux penetration 
in superconductors [33–35]. Magneto-optical images permit to ob-
serve that, along of the borderline between the normal region 
channel and the superconducting region, one can found small mag-
netic structures. The formation of these structures indicates a new 
arrangement of vortices along of the normal region channel, and 
furthermore, it indicates a non-homogeneous distribution of vor-
tices close to the borderline. In order to study the dynamic of 
magnetic flux penetration, for imaging, one important devise was 
built by E. Zeldov et al. [36].

In this paper we treat a discrete distribution of vortices. The 
configuration obtained in this article through TDGL equations can 
be experimentally verified.

The outline of this paper is as follows. In Section 2 is presented 
the TDGL model used in this article and also the numerical proce-
dure. In Section 3 is shown some snapshots of the magnetic field 
penetration which result of our numerical simulations. In Section 4
is presented an approach to explain the jumps of vortices under 
the view of the London theory. A conclusion is given in Section 5.

2. Theory and numerical simulation

The superconducting state can be represented by the complex 
order parameter �(x, y, z, t), where |�|2 is the density of super-
conductors electrons at position (x, y, z) at time t . The supercon-
ductivity is suppressed at the center of the vortex where |�|2 = 0, 
where the local magnetic field, B is maximum. The Gibbs energy of 
the superconducting state is Gs = Gn − α|�|2 + (β/2)|�|4, where 
Gn is the Gibbs energy of the normal conducting state. The param-
eter β is assumed constant and α is related to the temperature 
through α(T ) = α(0)(1 − T /Tc). For a type II superconductor the 
time-dependent Ginzburg–Landau (TDGL) equations, coupled to a 
penetrating magnetic field Ba = ∇ × A, with A being the magnetic 
vector potential, reads in SI units [37]
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The charge of a Cooper pair is denoted q = 2e and the Cooper 
pair mass is m. The parameter D is a phenomenological diffu-
sion coefficient [38]. An important property of the time-dependent 
model is that the current density J is J = σE + Js , where Js is 
the supercurrent, and σ is the coefficient of normal conductivity. 
Here 	 = 	(x, y, z, t) is the electric potential. E is the electric field 
given by E = −∂A/∂t − ∇	. The parameter μ0 is the permeability 
of the free space. The model is scaled with respect to λ and with 
the dimensionless variables marked by primes, Eqs. (1) and (2) can 
be transformed through [39]
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After some algebra and omitting the prime on the dimensionless 
variables, the Ginzburg–Landau equations can be rewriten as(
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where T is the reduced temperature (T = T /Tc), κ = λ/ξ is the 
Ginzburg–Landau constant, where ξ = h̄/

√
(2mα) is the coherence 

length. Since that TDGL equations, (4) and (5), are gauge invariant 
under the transformations [37] �̃ = � exp(iχ), Ã = A + ∇χ , and 
	̃ = 	 − ∂χ/∂t , where χ(x, y, z, t), and using the zero-scalar po-
tential gauge, 	 = 0, at all times and positions, the TDGL equations 
above can be rewriten as
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In order to solve the TDGL equations (6) and (7), we need to 
specify the boundary conditions of the superconducting sample, 
which are

(−i∇ − A)� · n = 0, (8)

∇ × A = Ba, (9)

E · n = 0. (10)

These conditions are the usual boundaries conditions, where the 
first one is related to the density of current found only inside the 
superconducting sample and the second one is related to the conti-
nuity of the magnetic field. To justify the third boundary condition, 
we must remember that the total density of current of supercon-
ducting sample is given by J = σE + Js , where Js is the density of 
supercurrent and E is the electrical field. As the normal current 
is parallel to the electrical field and as the current does not pass 
across the boundary of the superconductor, it is easy to see that 
the normal component of the electrical field must be zero on the 
boundary. The last boundary condition, Eq. (10), can be rewritten 
as(

∂A

∂t
+ ∇	

)
· n = 0. (11)

Recently Alstrom et al. [39] solved numerically the TDGL equations 
for various bidimensional geometries. They had used the bound-
ary conditions, ∇� · n = 0, ∇ × A = Ba , and A · n = 0. The last one 
is a consequence of the gauge invariance chosen (	 = 0), which 
permits writing ∂A/∂t · n = 0, and after the integration it gives 
us A · n = const. They had assumed this constant as zero. Their 
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