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Given a trajectory of length N , recurrence quantification analysis (RQA) traditionally operates on the 
recurrence plot, whose calculation requires quadratic time and space (O(N2)), leading to expensive 
computations and high memory usage for large N . However, if the similarity threshold ε is zero, we show 
that the recurrence rate (RR), the determinism (DET) and other diagonal line based RQA-measures can be 
obtained algorithmically taking O(N log(N)) time and O(N) space. Furthermore, for the case of ε > 0 we 
propose approximations to the RQA-measures that are computable with same complexity. Simulations 
with autoregressive systems, the logistic map and a Lorenz attractor suggest that the approximation 
error is small if the dimension of the trajectory and the minimum diagonal line length are small. When 
applying the approximate determinism to the problem of detecting dynamical transitions we observe that 
it performs as well as the exact determinism measure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recurrence quantification analysis (RQA), i.e., the quantification of structures in recurrence plots, has established in several fields of re-
search as a powerful tool to investigate recurrence related properties of complex dynamical systems [2]. The popularity of RQA is founded 
on its simplicity and flexibility to be applied to almost any type of data, including non-stationary processes [3]. In particular, the out-
standing role of the RQA-measure determinism (DET) has been demonstrated in several applications, including discriminating signals from 
noise [4], detecting dynamical transitions [5,6], and the recently proposed use for pattern mining and classification [7]. A comprehensive 
overview of recurrence plots and its applications is given in [1].

The computation and quantification of recurrence plots generally involves operations with quadratic time and space complexity 
(O(N2)). This computational complexity leads to strongly increasing computation times and memory consumption for long time series 
(longer than 100,000 data points). Recurrence analysis of long time series, such as audio data [8], epileptic seizures [9], material damage 
detection [10], or hourly weather variability [11], is, therefore, limited. Another application that can be limited by the high computational 
complexity is online monitoring of data streams, e.g., for video surveillance [12], monitoring social interactions [13], or assessing driving 
behavior [7]. This is also crucial for medical applications. For example, monitoring the brain activity of epilepsy patients by multichannel 
electroencephalography (EEG) can help to identify early signs of a coming epileptic seizure. This provides the opportunity to initiate an 
EEG-triggered on-demand countermeasure just before the epileptic seizure (e.g., by an electrical stimulation in order to reset the brain 
dynamics) and, hence, to improve the life quality of such patients [14,15]. Recurrence plot based measures are promising candidates for 
such purpose [16–19]. Similar efforts can also be found for early detection of life-threating cardio-vascular diseases, such as ventricu-
lar tachycardia [20] or obstructive sleep apnea [21]. Parallel computing approaches (e.g., using GPU calculations [11,22]) can accelerate 
computation but do not reduce the computational cost.

In this Letter we show the following. If the similarity threshold ε is zero, then the recurrence rate, the determinism and other diag-
onal line based RQA-measures are in the computational complexity class O(N log(N)), whereas space complexity is O(N). We use this 
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observation in order to propose approximations to these measures for the case of ε > 0. The (approximative) measures are obtained 
algorithmically, without having to calculate the recurrence plot.

2. Motivation

Recent work has introduced recurrence plot-based distance measures, which can be utilized for mining (multi-dimensional) time series 
with nonlinear dynamics [23,24]. However, the quadratic time and space complexity of computation and quantification of recurrence plots 
makes distance calculations for relatively long time series and online processing of fast time series streams intractable. For these purposes 
we aim to approximate the proposed recurrence plot-based distance measures in such a way as to reduce the computational complexity 
while maintaining the classification accuracy.

3. Recurrence quantification analysis

For a given d-dimensional phase space trajectory �x (reconstructed from a time series x, e.g., by time-delay embedding [25]) of length 
N and similarity threshold ε ≥ 0 the recurrence plot of �x is an illustration of the binary recurrence matrix R, given by

Ri, j = Θ
(
ε − ‖�xi − �x j‖

)
, i, j = 1, . . . , N,

where ‖ · ‖ is a norm in the phase space of �x and Θ is the Heaviside step function, defined by Θ(y) = 1 if y ≥ 0 and Θ(y) = 0 if y < 0. 
Thus Θ indicates whether �xi and �x j are in ε-proximity (also denoted as similar) or not, i.e., Ri, j = 1 if ‖�xi − �x j‖ ≤ ε and Ri, j = 0 if 
‖�xi − �x j‖ > ε. This relation is essential for the study of recurrence plots and will be used extensively in this Letter. The recurrence plot 
contains the line of identity (LOI), which means that each entry on the main diagonal of R is 1. Structures parallel to the main diagonal, 
referred to as diagonal lines, are caused by similarly evolving epochs of the phase space trajectory �x.

Recurrence quantification analysis was developed in order to quantitatively describe recurrence plots. For this purpose, small scale 
structures, such as recurrence points or diagonal lines in the recurrence plot are used [26]. The fraction of recurrence points in the 
recurrence plot is measured by the recurrence rate,

RR = 1

N2

N∑
i, j=1

Ri, j, (1)

which is interpreted as the probability to find a recurrence of trajectory �x. A more sophisticated RQA-measure is the determinism, which 
is defined for a given minimum diagonal line length μ as

DET(μ) =
∑N

l=μ l · P (l)∑N
i, j=1 Ri, j

, (2)

where P (l) is the number of diagonal lines of length l in R. DET can be interpreted as the probability that a recurrence point belongs 
to a diagonal line. The parameter μ is usually set to 2. This choice is sufficient for most applications. However, in particular cases, larger 
values of μ can be necessary, e.g., reducing effects of tangential motion (oversampling), noise, or embedding effects [1].

As already mentioned, a phase space trajectory of a univariate time series can be reconstructed by time delay embedding [25]. We call 
this procedure time series embedding, since it is applied to the time series. In the sequel we will apply the method of time delay embedding 
to the trajectory �x (that possibly was created by time series embedding for reconstruction purposes), but with the intention of quantifying 
diagonal structures in R. In order to distinguish that from the time series embedding, we will denote this as trajectory embedding. More 
precisely, for a fixed time delay 1 and embedding dimension ν , we consider the trajectory embedding vectors

�xν
j = (�x j, �x j+1, . . . , �x j+ν−1), (3)

which are of dimension d · ν , provided that the trajectory �x is d-dimensional. The trajectory embedding of �x is then defined to be the 
sequence �xν = (�xν

j ) j=1,...,N−ν+1, which can be imagined as a trajectory in a (d · ν)-dimensional phase space. In Section 4.2 we show that 
information about P (l) can be extracted by these representations leading to a surprising identity for the determinism.

4. RR and DET identities

We deduce identities for RR and DET(μ) , which allow fast calculation (without computing the recurrence plot) if the similarity threshold 
ε is zero. The identity for RR does hold for ε = 0 only. The identity for DET(μ) is first shown for arbitrary ε ≥ 0 and the assumption that the 
phase space norm is the maximum norm ‖ · ‖∞ . However, in the special case of ε = 0, we will argue that the restriction to the ‖ · ‖∞-norm 
becomes redundant. Consequently it follows the important fact that the recurrence rate and the determinism are in O(N log(N)) if ε = 0, 
whereas the computational complexity of the classical methods that quantify the recurrence plot is O(N2).

4.1. Recurrence rate identity

Given the trajectory embedding �xν , Eq. (3), in analogy to Eq. (1) we define

PP(ν) :=
N−ν+1∑

i, j=1

Θ
(
ε − ∥∥�xν

i − �xν
j

∥∥)
, (4)



Download English Version:

https://daneshyari.com/en/article/1866802

Download Persian Version:

https://daneshyari.com/article/1866802

Daneshyari.com

https://daneshyari.com/en/article/1866802
https://daneshyari.com/article/1866802
https://daneshyari.com

