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We determine the two-dimensional symplectic map describing 1P/Halley chaotic dynamics. We compute 
the Solar system kick function, i.e. the energy transfer to 1P/Halley along one passage through the Solar 
system. Each planet contribution to the Solar system kick function appears to be the sum of a Keplerian 
potential and of a rotating gravitational dipole potential due to the Sun movement around Solar system 
barycenter. The Halley map gives a reliable description of comet dynamics on time scales of 104 yr while 
on a larger scales the parameters of the map are slowly changing due to slow oscillations of orbital 
momentum.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The short-term regularity of 1P/Halley appearances in the So-
lar system (SS) contrasts with its long-term irregular and unpre-
dictable orbital behavior governed by dynamical chaos [1]. Such 
chaotic trajectories can be described by a Kepler map [1,2] which 
is a two-dimensional area preserving map involving energy and 
time. The Kepler map was originally analytically derived in the 
framework of the two-dimensional restricted three body problem 
[2] and numerically constructed for the three-dimensional realis-
tic case of 1P/Halley [1]. Then the Kepler map has been used to 
study nearly parabolic comets with perihelion beyond Jupiter or-
bital radius [2–5], 1P/Halley chaotic dynamics [1,6], mean motion 
resonances with primaries [7,8], chaotic diffusion of comet trajec-
tories [7,9–12] and chaotic capture of dark matter by the SS and 
galaxies [13–15]. Alongside its application in celestial dynamics 
and astrophysics, the Kepler map has been also used to describe 
atomic physics phenomena such as microwave ionization of excited 
hydrogen atoms [16–18], and chaotic autoionization of molecular 
Rydberg states [19].

In this work we semi-analytically determine the symplectic 
map describing 1P/Halley dynamics, taking into account the Sun 
and the eight major planets of the SS. We use Melnikov integral 
(see, e.g. [4,20–24]) to compute exactly the kick functions associ-
ated to each major planet and in particular we retrieve the kick 
functions of Jupiter and Saturn which were already numerically 
extracted by Fourier analysis [1] from previously observed and 
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computed 1P/Halley perihelion passages [25]. We show that each 
planet’s contribution to the SS kick function can be split into a 
Keplerian potential term and a rotating dipole potential term due 
to the Sun movement around the SS barycenter. We illustrate the 
chaotic dynamics of 1P/Halley with the help of the symplectic 
Halley map and give an estimate of the 1P/Halley sojourn time. 
Then we discuss its long-term robustness comparing the semi-
analytically computed SS kick function to the one we extract from 
an exact numerical integration of Newton’s equation for Halley’s 
comet orbiting the SS constituted by the eight planets and the 
Sun (see snapshots in Fig. 1) from −1000 to +1000 Jovian years 
around J2000.0, i.e. from about −10 000 BC to about 14 000 AD. 
Exact integration over a greater time interval does not provide ex-
act ephemerides since Halley’s comet dynamics is chaotic, see e.g. 
[6] where integration of the dynamics of SS constituted by the Sun, 
Jupiter and Saturn has been computed for 106 years.

2. Symplectic Halley map

Orbital elements of the current osculating orbit of 1P/Halley 
are [26]

e � 0.9671, q � 0.586 au,

i � 162.3, � � 58.42,

ω � 111.3, T0 � 2446467.4 JD

Along this trajectory (Fig. 1) the comet’s energy per unit of mass 
is E0 = −1/2a = (e − 1)/2q where a is the semi-major axis of the 
ellipse. In the following we set the gravitational constant G = 1, 
the total mass of the Solar system (SS) equal to 1, and the semi-
major axis of Jupiter’s trajectory equal to 1. In such units we have 
q � 0.1127, a � 3.425 and E0 � −0.146. Halley’s comet pericenter 
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Fig. 1. Two examples of three-dimensional view of Halley’s comet trajectory. The left 
panel presents an orthographic projection and the right panel presents an arbitrary 
point of view. The red trajectory shows three successive passages of Halley’s comet 
through SS, the other near circular elliptic trajectories are for the eight Solar system 
planets, the yellow bright spot gives the Sun position. At this scale details of the 
Sun trajectory is not visible. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

can be written as q = a (1 − e) � �2/2 where � is the intensity per 
unit of mass of the comet angular momentum vector. Assuming 
that the latter changes sufficiently slowly in time we can consider 
the pericenter q as constant for many comet’s passages through 
the SS. We have checked by direct integration of Newton’s equa-
tions that this is actually the case (�q � 0.07) at least for a period 
of −1000 to +1000 Jovian years around J2000.0. Consequently, 
Halley’s comet orbit can be reasonably characterized by its semi-
major axis a or equivalently by Halley’s comet energy E . During 
each passage through the SS many body interactions with the Sun 
and the planets modify the comet’s energy. The successive changes 
in energy characterize Halley’s comet dynamics.

Let us rescale the energy w = −2E such as now positive en-
ergies (w > 0) correspond to elliptic orbits and negative energies 
(w < 0) to hyperbolic orbits. Let us characterize the nth passage at 
the pericenter by the phase xn = tn/T J mod 1 where tn is the date 
of the passage and T J is Jupiter’s orbital period considered as con-
stant. Hence, x represents an unique position of Jupiter on its own 
trajectory. The energy wn+1 of the osculating orbit after the nth 
pericenter passage is given by

wn+1 = wn + F (xn)

xn+1 = xn + w−3/2
n+1

(1)

where F (xn) is the kick function, i.e. the energy gained by the 
comet during the nth passage and depending on Jupiter phase xn

when the comet is at pericenter. The second row in (1) is the third 
Kepler’s law giving the Jupiter’s phase at the (n +1)th passage from 
the one at the nth passage and the energy of the (n + 1)th oscu-
lating orbit.

The set of Eqs. (1) is a symplectic map which captures in a 
simple manner the main features of Halley’s comet dynamics. This 
map has already been used by Chirikov and Vecheslavov [1] to 
study Halley’s comet dynamics from previously observed or com-
puted perihelion passages from −1403 BC to 1986 AD [25]. In [1]
Jupiter’s and Saturn’s contributions to the kick function F (x) had 
been extracted using Fourier analysis. In the next section we pro-
pose to semi-analytically compute the exact contributions of each 
of the eight SS planets and the Sun.

3. Solar system kick function

Let us assume a SS constituted by eight planets with masses 
{μi}i=1,...,8 and the Sun with mass 1 − μ = 1 − ∑8

i=1 μi . The total 
mass of the SS is set to 1 and μ � 1. In the barycentric reference 
frame we assume that the eight planets have nearly circular el-
liptical trajectories with semi-major axis ai . We rank the planets 

such as a1 < a2 < . . . < a8 so a5 and μ5 are the orbit semi-major 
axis and the mass of Jupiter. The corresponding mean planet ve-

locities {vi}i=1,...,8 are such as v2
i =

(
1 − ∑

j≥i μ j

)
/ai � 1/ai . Here 

we have set the gravitational constant G = 1 and in the following 
we will take the mean velocity of Jupiter v5 = 1. The Sun tra-
jectory in the barycentric reference frame is such as (1 − μ) r� =
− 

∑8
i=1 μiri .

In the barycentric reference frame, the potential experienced by 
the comet is consequently

�(r) = − 1 − μ

‖r − r�‖ −
8∑

i=1

μi

‖r − ri‖

= �0(r)

[
1 +

8∑
i=1

μi

(
−1 − r · ri

r2
+ r

‖r − ri‖
)]

+ o
(
μ2

)
(2)

where �0(r) = −1/r is the gravitational potential assuming all the 
mass is located at the barycenter.

Let us define a given osculating orbit C0 with energy E0 and 
corresponding to the �0(r) potential. The change of energy for the 
comet following the osculating orbit C0 under the influence of the 
SS potential �(r) (2) is given by the integral

�E (x1, . . . , x8) =
∮
C0

∇ (�0(r) − �(r)) · dr (3)

which gives at the first order in μ

�E (x1, . . . , x8)

�
8∑

i=1

μi

∮
C0

∇
(

r · ri

r3
− 1

‖r − ri‖
)

· dr

�
8∑

i=1

�Ei (xi) (4)

This change in energy depends on the phases (xi = t/Ti mod 1) of 
the planets when the comet passes through pericenter. From (4)
we see that each planet contribution �Ei (xi) are decoupled from 
the others and can be computed separately.

The integral (3) is similar to the Melnikov integral (see e.g. 
[4,20–24]) which is usually used in the vicinity of the separatrix 
to obtain the energy change of the pendulum perturbed by a peri-
odic parametric term. In the case of the restricted 3-body problem 
the Melnikov integral can be used to obtain the energy change of 
the light body in the vicinity of 2-body parabolic orbit (w � 0) [4]. 
We checked that integration (3) along an elliptical osculating orbit 
or along the parabolic orbit corresponding to the same pericen-
ter give no noticeable difference as long as the comet semi-major 
axis is greater than planet semi-major axis. To be more realistic 
we adopt integration over an elliptical osculating orbit C0 since in 
the case of 1P/Halley slight differences start to appear for Neptune 
contribution to the kick function.

After the comet’s passage at the pericenter, when the planet 
phases are x1, . . . , x8, the new osculating orbit corresponds to the 
energy E0 + �E (x1, . . . , x8). Knowing the relative positions of the 
planets, the knowledge of e.g. x = x5 is sufficient to determine all 
the xi ’s. Hence, for Halley map (1) the kick function of the SS is 
F (x) = −2�E (x) = ∑8

i=1 Fi(xi) where Fi(xi) is the kick function of 
the ith planet. In the following we present results obtained from 
the computation of the Melnikov integral (3) using coplanar circu-
lar trajectories for planets. We have checked the results are quite 
the same in the case of the non-coplanar nearly circular elliptic 
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