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In a honeycomb lattice the symmetry has been broken by adding an ionic potential and a single-
particle gap was generated in the spectrum. We have employed the iterative perturbation theory (IPT) in 
dynamical mean field approximation method to study the effects of competition between U and Δ on 
energy gap and renormalized Fermi velocity. As we found, the competition between the single-particle 
gap parameter and the Hubbard potential closed the energy gap and restored the semi-metallic phase, 
then the gap was opened again in Mott insulator phase. For a fixed Δ by increasing U , the renormalized 
Fermi velocity ṽ F is decreased, but change in Δ, for a fixed U , has no effects on ṽ F . The difference in 
filling factor is calculated for various numbers of U , Δ. The results of this study can be implicated for 
gapped graphene e.g. hydrogenated graphene.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many mechanisms can open an energy gap in metallic or semi-
metallic state, such as: Mott-insulator transition or charge and spin 
density wave on nested Fermi surface [1]. In addition, competi-
tion between two interactions can close and suppress the energy 
gap [2]. For studying the opening and suppression of energy gap 
in spectrum of a honeycomb lattice, we started with a simple tight 
binding Hamiltonian, which the substrate can induce a symmetry 
breaking through an ionic potential of strength Δ and adding on-
site repulsive interaction U [3].

The ground state of the honeycomb lattice when Δ �= 0, U = 0
is a band insulator on the strongly correlated limit [4,5]. This im-
mediately leads to a band gap of magnitude 2Δ, with site occu-
pancies nlower band = 2, nhigher band = 0. This gap decreases with in-
creasing U , and no-double occupancy constraint imposed by large 
U [6]. In opposite limit, i.e. Δ � U the system can be described in 
terms of an effective massive Dirac theory. The intermediate phase 
can be found between two insulator and massive Dirac fermions, 
which obeys massless Dirac theory. The first purpose of this paper 
is to tackle these questions: What would be the result of com-
petition between U and Δ on occupancy of each sub-lattice in 
honeycomb lattice? Or what would be the effects of U and Δ on 
the energy gap? Another target of this paper is studying the effects 
of competition between U and Δ on renormalization of Fermi ve-
locity.
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There is a widespread consensus on the large potential of 
graphene for electronic applications [7,8]. The low electronic den-
sity of states near the Fermi energy and zero band-gap at neutral-
ity point in graphene exhibit a small ON/OFF switching ratio, due 
to this problem the application of graphene for charge based logic 
devices is inhibited [9]. It has been shown, that pure graphene 
exhibits weak anti-ferromagnetic properties at near room tempera-
ture [10]. The carbon-based systems such as graphene are the most 
attractive objects for hydrogen storage [11]. The hydrogen adsorp-
tion on graphene is an interesting idea for two reasons: first: a 
band gap is induced [12] and second: the hydrogenated graphene 
sheet is converted to a hydrogen storage device [13]. The results of 
this paper could be generalized to hydrogenated graphene.

In semi-metal–insulator transition (SMIT) unlike to metal–
insulator transition (MIT), there is no Kondo resonance corre-
sponding to quasi-particle at the Fermi level [14]. Therefore, SMIT 
can be described by renormalized Fermi velocity ṽ F instead of 
spectral weight of such resonant state. The Fermi velocity is an or-
der parameter which is characterized by a Dirac liquid state [25]. 
We use dynamical mean field theory (DMFT) for probing the ef-
fects of U and Δ within paramagnetic phase in ionic-Hubbard 
model. The DMFT is exact in limit of infinite coordination num-
bers [15], but for lower dimensions the local self-energy (here it 
is k-independent) becomes only an approximate description [16]. 
Therefore the critical values of some parameters in DMFT approx-
imation on honeycomb lattice maybe overestimated [17]. But we 
should note that the overall picture of output numerical results is 
expected to hold.
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The phase separation in 2D Hubbard model was studied with 
the dynamical cluster approximation (DCA) [18]. In the DMFT 
method the interactions in a lattice are mapped to an impurity 
problem which is embedded self-consistently in a host. Therefore 
the DMFT neglects spatial correlations, but in DCA we assume 
that correlations are short range. The original lattice is mapped 
to a periodic cluster of specific size, which is embedded in a self-
consistent host. Therefore the correlations in same range with the 
cluster size are considered accurately, while the other interactions 
with longer length than cluster are described at the mean-field ap-
proximation. In limit of Δ → 0, the ionic-Hubbard model and Hub-
bard model are similar, when we use DCA and DMFT in this limit 
(Δ → 0), we found different results on the same model and same 
lattice. These differences are in magnitude of critical Uc and border 
of the phase regions, but the overall descriptions of phase diagram 
and phase separation are expected to hold. The metal–insulator 
transition has obtained by cluster DMFT (CDMFT), is different from 
that of the single-site DMFT. In CDMFT with cluster size larger 
than 2, the quasi-particle weight is k-dependent and nonzero, but 
in the single-site DMFT, the quasi-particle weight is k-independent 
and vanishes continuously at the MIT region [19]. In Ref. [20], the 
variational cluster approximation (VCA) is applied to calculate local 
electron correlations in bipartite square and honeycomb lattices in 
Hubbard model, they found, in honeycomb lattice electron density 
displayed smooth metal–insulator transition with continuous evo-
lution. The square lattice experienced metal–insulator transition, 
but the electron density in square lattice displayed discontinuity 
with spontaneous transition [20]. The phase transition in the ionic-
Hubbard model has been investigated in a two-dimensional square 
lattice by determinant quantum Monte Carlo (DQMC). The compe-
tition between staggered potential and on site potential lead to the 
phase transition from Mott insulator to metallic and band insula-
tor [21].

The ionic-Hubbard (IH) model has been studied in 1-D and 
2D [22]. The DMFT approximation has been employed to study 
of such model [23], this technique is implemented to study the 
phase transitions and phase diagrams of honeycomb lattice in IH 
model [6] and a square lattice was studied by determinant quan-
tum Monte Carlo method [24]. The results can be related to physics 
of graphene and hydrogenated graphene for specific magnitude of 
Δ and U .

2. Model and method

The ionic-Hubbard model (IHM) on the honeycomb lattice is 
described by this Hamiltonian,

H = −t
∑

i∈A, j∈B,σ

(
c†

iσ c jσ + h.c.
) − μ

∑
i

ni

+ Δ
∑
i∈A

ni − Δ
∑
i∈B

ni + U
∑

j

n j↓n j↑, (1)

where t is the nearest neighbor hopping, Δ is a staggered one-
body potential that alternates sign between site in sub-lattice A
or B and U is the Hubbard repulsion. The chemical potential is 
μ = U/2 at half-filling and so the average occupancy is 〈nA 〉+〈nB 〉

2 =
1. This model represented a band insulator with energy gap 2Δ

at non-interacting limit, U = 0. In opposite limit, U � Δ, the sys-
tem is in Mott insulator state. What’s the intermediate phase? The 
semi-metallic character restored and massive Dirac fermions will 
become massless, as a result of increasing the Hubbard poten-
tial, U . It has been demonstrated that by DMFT method can de-
scribe and understand band insulator (BI)–semi-metal (SM)–Mott 
insulator (MI) transition [2]. The first step is introducing interac-
tion Green’s function in bipartite lattice,

Fig. 1. (Color online.) The density plot of the energy gap in U , Δ plate. The band 
insulator and Mott insulator are separated by semi-metal phase.

G
(�k,ω+) =

(
ζA(�k,ω+) −ε(�k)

−ε(�k) ζB(�k,ω+)

)
(2)

where �k is the momentum vector in first Brillouin zone, ε(�k) is 
the energy dispersion for the honeycomb lattice, and ζA(B) = ω+ ∓
Δ +μ −ΣA(B)(ω

+), with ω+ = ω+ i0+ . The local Green’s function 
corresponding to each sub-lattice can be written as,

Gα

(
ω+) =

∑
�k

Gα α

(�k,ω+)

= ζᾱ
(
ω+) ∞∫

−∞
dε

ρ0(ε)

ζA(ω+)ζB(ω+) − ε2
(3)

where α = A(B), ᾱ = B(A) are corresponding to each sub-lattice, 
and ρ0(ε) is the bare DOS of the honeycomb lattice (graphene). 
The details of calculations are done in previous work [6]. The DOS 
of an interaction system can be calculated by,

ρα(ω) = Σ�k�Tr
[
Gα

(�k,ω+)]/
π. (4)

According to particle–hole symmetry at half-filling in honey-
comb lattice, we know ρA(ω) = ρB(−ω). The total DOS eventually 
obtained via ρ(ω) = ρA(ω) + ρB(ω). The DOS is necessary for ob-
taining the energy gap for each pair of U , Δ. In computation of 
energy gap for each pair of U , Δ, the density of state is essen-
tial and slope of ρ(ε) near Dirac points determined renormalized 
Fermi velocity in SM phase [25].

3. Results and discussion

The filling factors of each sub-lattice, nA, nB and energy gap 
have been calculated by DMFT outputs. In Fig. 1, the density plot 
of the energy gap is plotted vs, U , Δ. In calculation of Egap , the 
U , Δ have been changed in 0.1t steps, then for better resolu-
tion we used interpolation method to obtain continuous density 
plot. We can observe, the density plot of energy gap is in ex-
cellent agreement to Fig. 4 of Ref. [6]. The energy gap vanishes 
in the semi-metallic phase. In this phase diagram one can find 
graphene in U/t ∼ 3.0–4.0 and Δ/t ∼ 0.04–0.05, where the sys-
tem still remains in semi-metallic phase [26]. So the graphene can 
be SM, despite a symmetry breaking ionic potential of strength 
Δ ∼ 110–150 meV (t ∼ 2.7 eV). The renormalization of the gap 
magnitude is not the only reason of the Hubbard correlations U . 
It also influences by other spectral features such as the life-
time of quasi-particles, e.g. in hydrogenated graphene [28]. In this 
DMFT approximation, results may have overestimated the upper 
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