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We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear 
optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with 
Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Extreme wave phenomenon appears in a variety of scientific 
and social contexts, ranging from hydrodynamics and oceanog-
raphy to geophysics, plasma physics, Bose–Einstein condensation 
(BEC), financial markets and nonlinear optics [1–5]. Historically, 
the first reported manifestation of extreme or rogue waves is the 
sudden appearance in the open sea of an isolated giant wave, 
with height and steepness much larger than the average values 
of ocean waves. A universal model for describing the dynamics of 
rogue wave generation in deep water with a flat bottom is the 
one-dimensional nonlinear Schrödinger (NLS) equation in the self-
focusing regime. The mechanism leading to the appearance of NLS 
rogue waves requires nonlinear interaction and modulation insta-
bility (MI) of the continuous wave (CW) background [6]. Indeed, 
the nonlinear development of MI may be described by families 
of exact solutions such as the Akhmediev breathers [7], which 
are recognized as a paradigm for rogue wave shaping. A special 
member of this solution family is the famous Peregrine soliton [8], 
which describes a wave that appears from nowhere and disappears 
without a trace. Extreme waves that may be well represented by 
the Peregrine soliton have recently been experimentally observed 
in optical fibers [9], in water-wave tanks [10] and in plasmas [11].

Moving beyond the one-dimensional NLS model, it is impor-
tant to consider extreme wave phenomenon in either multidimen-
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sional or multicomponent nonlinear propagation. Vector systems 
are characterized by the possibility of observing a coupling of en-
ergy among their different degrees of freedom, which substantially 
enriches the complexity of their rogue-wave families. Recent stud-
ies have unveiled the existence of extreme wave solutions in the 
vector NLS equation or Manakov system [12–15], the three-wave 
resonant interaction equations [16], the coupled Hirota equations 
[17] and the long-wave–short-wave resonance [18].

In this Letter, we present the rogue wave solution of the classi-
cal massive Thirring model (MTM) [19], a two-component nonlin-
ear wave evolution model that is completely integrable by means 
of the inverse scattering transform method [20–22]. The classical 
MTM is a particular case of the coupled mode equations (CMEs) 
that describe pulse propagation in periodic or Bragg nonlinear op-
tical media [23–27]. Furthermore, the CMEs also appear in other 
physical settings. In particular and relevant to rogue waves, they 
describe ocean waves in deep water for a periodic bottom [28]. 
As such, the search for novel solution forms of these equations 
including rogue waves, provides understanding of nonlinear phe-
nomenon and leads to applications beyond optical systems. In this 
respect, benefiting from the result [25,29] that many MTM solu-
tions (including single and multi-solitons and cnoidal-waves) may 
be mapped into solutions of the CMEs, provides a tool used in 
several works including ocean waves [30], BEC [31] and metama-
terials [32].

After discussing the analytical rogue wave solution in Section 2, 
in Section 3 we numerically confirm its stability, and show that it 
may also be applied to describe the generation of extreme events 
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in the more general context of the CMEs. Finally, in Section 4 we 
discuss the physical implementation of MTM rogue waves by using 
coherent effects in resonant nonlinear media, such as electromag-
netically induced transparency (EIT), which may lead to the giant 
enhancement of cross-phase modulation (XPM) with the simulta-
neous suppression of self-phase modulation (SPM).

2. Analytical solution

Let us express the MTM equations for the forward and back-
ward waves with envelopes U and V , respectively, as

Uξ = −iνV − i

ν
|V |2U

Vη = −iνU − i

ν
|U |2 V . (1)

Here the light-cone coordinates ξ , η are related to the space co-
ordinate z and time variable t by the relations ∂ξ = ∂t + c∂z and 
∂η = ∂t − c∂z , where c > 0 is the linear group velocity. Even though 
the arbitrary real parameter ν can be rescaled to unity, we find it 
convenient to keep it for dimensional reasons.

The rogue waves travel over the following CW background

U0 = aeiφ, V 0 = −beiφ (2)

where, with no loss of generality, the constant amplitudes a and b
are real, and the common phase φ(ξ, η) is

φ = αξ + βη, α = b

(
ν

a
− b

ν

)
, β = a

(
ν

b
− a

ν

)
. (3)

Up to this point we consider the two amplitudes a, b as free back-
ground parameters. It can be proved that rogue wave solutions of 
Eqs. (1) exist if and only if the two amplitudes a, b satisfy the in-
equality

0 < ab < ν2. (4)

By applying the Darboux method to the MTM [33], one obtains the 
following rogue wave solution

U = aeiφ μ∗

μ

(
1 − 4i

q∗
1q2

μ∗

)
,

V = −beiφ μ

μ∗

(
1 − 4i

q∗
1q2

μ

)
(5)

with the following definitions

q1 = θ1(1 + iq) + qθ2, q2 = θ2(1 − iq) + qθ1,

q = a

χ∗ η + bχ∗ξ (6)

and

μ = |q1|2 + |q2|2 + (i/p)
(|q1|2 − |q2|2

)
,

p =
√

ν2

ab
− 1 > 0. (7)

In the expression (5), which is the analog of the Peregrine solution 
of the focusing NLS equation, the free parameters are the two real 
background parameters a, b, which are however constrained by the 
condition (4), and the two complex parameters θ1, θ2, while the 
parameter χ is given by the expression

χ = b

ν
(1 + ip) = ν

a(1 − ip)
. (8)

Expression (5) of the rogue wave solution may be simplified by fix-
ing the reference frame of the space–time coordinates. The general 
solution (5) may then be obtained by applying to this particular 
solution a Lorentz transformation.

According to the last remark above, we now provide the rogue 
wave solution in terms of the space z = c(ξ − η) and time t =
(ξ +η) coordinates directly. By rewriting the CW phase (3) in these 
coordinates, one obtains

φ = kz − ωt, k = ν

2c

(
1 − ab

ν2

)(
b

a
− a

b

)
,

ω = −ν

2

(
1 − ab

ν2

)(
a

b
+ b

a

)
, (9)

where k is the wave number of the background CW. Setting a = b
means choosing the special frame of reference such that k = 0. 
Note that the other possibility a = −b does not satisfy the con-
dition that p is real (see (7)). From a physical standpoint, the 
CW background solution with a = b corresponds to a nonlinear 
wave whose frequency ω = −ν(1 − a2/ν2) enters deeper inside 
the (linear) forbidden band-gap ω2 < ν2 as its intensity grows 
larger. A linear stability analysis of the CW background solution (2)
shows that it is modulationally unstable for perturbations with a 
wavenumber k2 < 4a2/c2 (for details, see [34]). Note that modula-
tion instability gain extends all the way to arbitrarily long-scale 
perturbations (albeit with a vanishing gain), a condition which 
has been refereed to as “baseband instability”, and that is closely 
linked with the existence condition of rogue waves in different 
nonlinear wave systems (e.g., the Manakov system, see Ref. [15]). It 
is also interesting to point out that, outside the range of existence 
of the rogue wave solution (5), that is for a2 > ν2, the background 
is unstable with respect to CW perturbation with a finite (nonzero) 
gain (see Ref. [34]).

By using translation invariance to eliminate the parameters θ1, 
θ2, one finally ends up with the following expression of the MTM 
rogue wave solution

U = ae−iωt μ
∗

μ

[
1 − 4

μ∗ q∗(q + i)

]
,

V = −ae−iωt μ

μ∗

[
1 − 4

μ
q∗(q + i)

]
(10)

where

ω = −ν

(
1 − a2

ν2

)
, q = − a2

νc

[
ip(z − z0) − c(t − t0)

]
,

p =
√

ν2

a2
− 1, μ = 2|q|2 + (1 + 2 Im q)

(
1 − i

p

)
, (11)

where z0 and t0 are arbitrary space and time shifts, respectively. 
Note that a further simplification may come from rescaling z, t , U , 
V by using the length scale factor S = −νc/a2.

In Fig. 1 we show the dependence on space and time of the 
intensities |U |2 and |V |2 of the forward and backward components 
of the rogue wave (10). Here we have set ν = −1, c = 1, a = 0.9, 
t0 = 2 and z0 = 3.5. As can be seen, the initial spatial modulation 
at t = 0 evolves into an isolated peak with a maximum intensity 
of about nine times larger than the CW background intensity. The 
corresponding contour plot of these intensities is shown in Fig. 2.

3. Numerical results

In order to verify the spatio-temporal stability of the rogue 
wave solution (10) over a finite spatial domain, we numerically 
solved Eqs. (1) with ν = −1, c = 1, and using the initial (i.e., at 
t = 0) and boundary (i.e., at z = 0 and z = L) conditions given by 
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