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A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized 
versions have an independent total amplitude control parameter. Additional further linearization leads 
naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single 
amplitude controller is then implemented using a new switch element, producing a chaotic oscillation 
that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Lorenz model [1] describes the motion of a fluid under 
the conditions of Rayleigh–Bénard flow [2], and it has become a 
paradigm for chaotic dynamics. Furthermore, recent publications 
[3–10] show that the Lorenz system is still being actively re-
searched. There is an inherent mechanism for the motion of the 
convective flow, which is governed by the stream function and the 
temperature deviation function. When the goal is to find the fac-
tors that lead to chaotic dynamics, it is necessary to consider the 
nonlinearity in the Lorenz model that represents a coupling be-
tween the fluid motion and the temperature deviation. The Lorenz 
equations provide a useful physical model of the dynamics assum-
ing the actual fluid motion has only one spatial mode in the x
direction and the temperature difference between top and bottom 
boundaries is not too large. Therefore, the Lorenz model has in-
herent limitations, and it is instructive to study diversified forms 
of it that could have physical implications. A natural question to 
ask is how the Lorenz system is modified when the amplitude in-
formation in the nonlinearity is removed by using a signum func-
tion, which leads to a piecewise linearization of the Lorenz model, 
which to our knowledge has not previously been done.
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Furthermore, the piecewise linearity can be simply imple-
mented electronically using diodes and operational amplifiers 
[11–16], whereas the usual quadratic nonlinearities require mul-
tipliers [17–19]. For some dynamical systems, this substitution 
preserves the chaotic dynamics. Another reason for doing this is 
that the resulting equations can be solved exactly in the linear re-
gions with boundary conditions where the discontinuities occur. 
The method is analogous to Lozi’s piecewise linearization of the 
Hénon map, where the quadratic term is replaced by an absolute-
value term [20], or to the piecewise linearization of a jerk system 
by Linz and Sprott [21]. In addition, the piecewise linearization 
may allow a single amplitude control parameter [17,22,23], which 
is helpful for circuit implementation in radar or communication 
engineering to reduce the circuit complexity and avoid saturation 
of the amplifiers, which can be a problem because of the broad-
band frequency spectrum of a chaotic signal.

In this paper, linearization of the Lorenz system is achieved 
by ignoring the amplitude of one variable in the quadratic terms. 
What we are doing is not the same as the common linearization of 
a nonlinear system about an equilibrium point, but rather a piece-
wise linearization of a nonlinear system that retains the chaotic 
dynamics. In Section 2, one of the two quadratic terms is trans-
formed into a non-smooth term with a signum operation, and a 
partially linearized version of the Lorenz system is derived. In Sec-
tion 3, both of the quadratic terms are linearized by the signum 
operation, and a corresponding completely linearized version of 
the Lorenz system is obtained. Both cases have a total amplitude 
control parameter. In Section 4, a piecewise linear diffusionless 
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Fig. 1. Strange attractor from system (2) with σ = 10, r = 28, β = 8/3 for initial conditions (0, 1, 0) with LEs = (0.4056, 0, −14.0723) (a) x–y plane, (b) x–z plane, (c) y–z
plane.

Lorenz system is obtained by further simplification, which has the 
same structure as the quadratic case but with coexisting strange 
attractors for some values of the parameters. In Section 5, the bi-
furcation and multistability of the piecewise linear diffusionless 
Lorenz system is analyzed. The circuit implementation is presented 
in Section 6. Conclusions and discussions are given in the last sec-
tion.

2. Partially linearized Lorenz system

The familiar Lorenz system is given by

ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = xy − βz (1)

with chaotic solutions for σ = 10, r = 28, β = 8/3. The system 
has rotational symmetry with respect to the z-axis as evidenced 
by its invariance under the coordinate transformation (x, y, z) →
(−x, −y, z), and it has a partial amplitude control parameter hid-
den in the coefficient of the xy term, which controls the amplitude 
of x and y, but not z. To obtain total amplitude control, it is neces-
sary to introduce an equal control factor into the xz term [22]. To 
obtain total amplitude control with a single parameter, it is neces-
sary to make all the terms have the same order except for the one 
whose coefficient provides the amplitude control [17,23]. Since a 
signum operation will retain the polarity information while remov-
ing the amplitude information, applying it to one of the factors in 
a quadratic term reduces the order of that term from 2 to 1. Then 
the coefficient of the remaining quadratic term gives total ampli-
tude control because it is the only term with an order different 
from unity. This idea leads to the partial linearization

ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = x sgn(y) − βz (2)

With (σ , r, β) the same as for the quadratic system, system (2)
gives the strange attractor shown in Fig. 1, which resembles the fa-
miliar Lorenz attractor, but with considerably larger x and y values. 
The Lyapunov exponents (LEs) given in the figure caption imply 
a Kaplan–Yorke dimension of 2.0288 and provide the main evi-
dence that the system is chaotic. Note that the variable x appears 
in four of the seven terms, and thus it is especially important in 
determining the dynamic behavior. Although there are two ways 
to linearize xy, namely x sgn(y) and y sgn(x), it is reasonable that 
x sgn(y) works better for retaining the chaos. It is tempting to lin-
earize the xz term in system (2) by replacing it with x sgn(z), but 
that destroys the coupling among the variables since z is always 
positive, and consequently, the first two dimensions will be inde-
pendent of the third dimension.

Systems (1) and (2) both have three equilibrium points. The 
equilibrium points of system (1) are (x, y, z) = (0, 0, 0) and 
(±8.4853, ±8.4853, 27), whose eigenvalues are (11.8277, −2.6667,

−22.8277) and (−13.8546, 0.0940 ± 10.1945i), respectively. The 
origin equilibrium point is a saddle-node, and the symmetric 
pair of equilibrium points are saddle-foci with identical eigen-
values. The equilibrium points of system (2) are (0, 0, 0) and 
(±72, ±72, 27), whose eigenvalues are (11.8277, −2.6667,

−22.8277) and (−14.9316, 0.6324 ± 6.9152i), indicating the same 
stability as for system (1). For both systems, the rate of volume ex-
pansion is −(σ +β +1), and thus the systems are dissipative when 
the parameters are positive with solutions as time goes to infin-
ity that contract onto an attractor of zero measure in their state 
space. However, the bifurcations for the parameters σ or β in the 
original system (1) and the revised system (2) are totally differ-
ent. The revised system (2) shows relatively robust chaos over a 
range of both parameters. Specifically, there is a wide range of the 
parameter σ for system (2) to give a symmetric pair of coexist-
ing strange attractors, while the original system (1) shows global 
attraction and bifurcations with different dynamics.

There is a well-known difficulty when calculating Lyapunov ex-
ponents for systems that involve discontinuous functions such as 
the signum. This problem arises because of the abrupt change 
in the direction of the flow vector at the discontinuity and the 
difficulty of maintaining the correct orientation of the Lyapunov 
vectors. Although there is a proper procedure for correcting this 
problem [24], we use here a simpler method in which sgn(y) is 
replaced by a smooth approximation given by tanh(N y) with N
sufficiently large that the calculated Lyapunov exponents are in-
dependent of its value [25]. For the case of system (2), a value 
of N = 10 is sufficient to give three-digit accuracy because of the 
large values of y. It is important with this method to use an inte-
grator with an adaptive time step and error control to resolve the 
rapid change in the vicinity of y = 0 and to repeat the calculation 
with slightly perturbed initial conditions to verify the number of 
significant digits. Out of an abundance of caution, we quote only 
two significant digits in the largest Lyapunov exponents and in-
clude the remaining questionable digits as subscripts.

The linearized system (2) has two amplitude parameters, unlike 
system (1), which has only one. A new introduced coefficient h in 
the remaining quadratic term is a total amplitude controller,

ẋ = σ(y − x)

ẏ = −hxz + rx − y

ż = x sgn(y) − βz (3)

To show this, let x = u/h, y = v/h, z = w/h to obtain new equa-
tions in the variables u, v , w that are identical to system (2). 
Therefore, the coefficient h controls the amplitude of all variables 
according to 1/h. Otherwise, simply note that xz is the only term 
not of first order.

As with the quadratic system (1), a coefficient m in the signum 
term will realize partial amplitude control,
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