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A zero-thickness limit of three-layer heterostructures under two bias voltages applied externally, where 
one of which is supposed to be a gate parameter, is studied. As a result, an effect of controllable resonant 
tunnelling of electrons through single-point potentials is shown to exist. Therefore the limiting structure 
may be termed a “point triode” and considered in the theory of point interactions as a new object. The 
simple limiting analytical expressions adequately describe the resonant behaviour in the transistor with 
realistic parameter values and thus one can conclude that the zero-range limit of multi-layer structures 
may be used in fabricating nanodevices. The difference between the resonant tunnelling across single-
point potentials and the Fabry–Pérot interference effect is also emphasized.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The models with zero-range potentials that describe point or 
contact interactions (see book [1] for details and references) are 
widely used in various applications to physics. Currently, because 
of the rapid progress in fabricating nanoscale quantum devices, of 
particular importance is the point modelling of different extra thin 
structures like quantum waveguides [2,3] or spectral filters [4]. The 
point interactions in higher dimensions [5–8] and their nonlin-
ear generalizations [9–11] have been of considerable study as well. 
These models admit exact closed analytical solutions and they pro-
vide relative simple situations, where an appropriate regularization 
procedure can be chosen to be in relevance with real structures 
being important for technological applications.

In the simplest case, the point interactions are described by 
one-dimensional Schrödinger operators with singular zero-range 
potentials given in the form of distributions. Within the distribu-
tional approach, these operators have been shown to exhibit pe-
culiar features under certain conditions [12–17]. Surprisingly, the 
potentials in the form of the derivative of Dirac’s delta function 
appear to be fully non-transparent for almost all values of the 
strength constant, except for a discrete (resonance) set at which 
the transmission occurs non-zero [18–24]. Moreover, as shown 
recently [25], a whole family of point potentials with full trans-
mission at the resonance set can be constructed as a zero-range 
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limit of three- or four-layer heterostructures. Therefore it would 
be of interest in applying the effect of one-point resonant tun-
nelling to the design of different types of nanodevices with adding 
potentially-controllable parameters.

In this Letter, we exploit a simple idea that suggests how to 
control the electron flow across the potentials located at a sin-
gle point. Consider the Hamiltonian H = −d2/dx2 + αD(x) where 
x ∈ R is a spatial variable, with a strength constant α and a dis-
tribution D(x). Assume next that this distribution has non-zero 
“positive” and “negative” parts in the sense that any its regular-
ization can be represented by a sequence �ε(x) = �+

ε (x) + �−
ε (x)

with �+
ε (x) ≥ 0 (a “barrier”) and �−

ε (x) ≤ 0 (a “well”) where ε
is a squeezing parameter. In this case, both the norm conver-
gence of the renormalized Hamiltonians Hε = −d2/dx2 + α�ε(x)
and the distributional limit �ε(x) → D(x) as ε → 0 can rigor-
ously be defined. However, from a practical point of view it is of 
interest to introduce two strength constants, one of which is be-
ing responsible for the positive part of the distribution and the 
other one for the negative part. In physical terms, the coefficient 
at the positive part can be considered as a “system” or a “struc-
tural” parameter being fixed in the model under investigation, 
whereas the other coefficient may be used as a varying “control-
lable” (“gate”) parameter. In this regard, some distributions like the 
derivative of Dirac’s delta function δ′(x), can be obtained in the 
zero-range limit from a sequence of regular functions �ε(x) for 
which 

∫
R

�ε(x)dx = 0. The key point of our approach is to replace 
the sequence α�ε(x) by α+�+

ε (x) + α−�−
ε (x) with two positive 

strength constants α+ and α− . Clearly, it is not possible in gen-
eral to define a distributional limit for this modified sequence if 
α+ �= α− , however, the zero-range limit of the regularized Hamil-
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Fig. 1. Schematic energy diagram of a three-layer heterostructure with two ap-
plied potentials eV eb and eV cb . Positive polarities are shown and, instead of tilted 
potentials, averaged flat steps assumed. The solid line shows potential (2) with 
ε1 = εb = ε2 = 1. Horizontal dashed lines correspond to the structure without ap-
plied voltages.

tonians −d2/dx2 + α+�ε(x) + α−�ε(x) may admit under appro-
priate conditions a well-defined self-adjoint operator in the ε → 0
limit. In this way, one can essentially enlarge the family of point 
interactions with the application to three-terminal quantum de-
vices. As we shall see below, the constants α± can be expressed in 
terms of voltages applied externally to a multi-layer heterostruc-
ture. Within a scattering approach, varying one of these voltages 
and therefore the constants α± , one can control the transmission 
properties of an electron flow across a heterostructure.

As a rule, a heterostructure is composed of plane layers, where 
the electron motion is confined in the longitudinal x direction 
being free in the transverse direction. In simple cases, the three-
dimensional Schrödinger equation of such a structure can be sep-
arated into longitudinal and transverse parts, writing the total 
electron energy E as the sum of the longitudinal and transverse 
energies: E = El + h̄2k2

t /2m∗ , where m∗ is an effective electron 
mass, and expressing the wave function by the product ψ = ψlψt . 
As a result, we arrive at the reduced one-dimensional Schrödinger 
equation with respect to the longitudinal components of the wave 
function ψl(x) and the electron energy El . For the brevity of nota-
tions, in the following we shall omit the subscript “l” at both ψl(x)
and El .

Next, having applied voltages which are necessary for the ap-
pearance of a net tunnelling current through a heterostructure, 
we need to introduce such objects as an external source of elec-
trons (an emitter or a cathode) and an electron drain (a collector 
or an anode). When additionally a base or a grid is embedded in 
a heterostructure and a controllable voltage relative to the emit-
ter is applied, this structure works as a three-terminal device, i.e., 
a transistor.

In this Letter, we consider a typical transistor (see, e.g., [26–28]), 
the energy diagram of which is depicted in Fig. 1, and pose the 
question what is an exactly solvable model of this device in the 
limit when its dimensions are confined to a point. Therefore it is 
reasonable to term such a zero-thickness limit as a “point triode”. 
As illustrated by Fig. 1, the structural parameters of the double-
barrier transistor are given by heights h1 and h2, and widths l1
and l2. The applied voltages are V eb (emitter-base, gate) and V cb
(collector-base), so that the total bias potential across this three-
terminal device becomes V .= eVec , where −e is the electronic 
charge and V ec = V eb + V cb is the emitter–collector voltage.

2. The reflection-transmission coefficients for a three-layer 
heterostructure

With a number of simplified assumptions (such as an effective 
electron mass m∗ , being the same in the emitter, base and collec-

tor regions, a separable wave function implying free motion in the 
perpendicular plane plus confined motion in the x direction, a flat-
step approximation of applied voltages as shown in Fig. 1, etc.), the 
reduced one-dimensional Schrödinger equation reads

−ψ ′′(x) + Uε(x)ψ(x) = Eψ(x), (1)

where the prime stands for the differentiation with respect to the 
spatial coordinate x, ψ(x) and E are the longitudinal components 
of the wave function and the electron energy, respectively. Here 
and in the following, we use the units in which h̄2/2m∗ = 1. The 
potential Uε(x), defined within the heterostructure region, reads

Uε(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(h1 − eV eb/2)ε−2
1

for 0 < x < ε1l1,

eV ebε
−2
b

for ε1l1 < x < ε1l1 + εblb,

(h2 − eV eb − eV cb/2)ε−2
2

for ε1l1 + εblb < x < Lε,

(2)

where the three-component vector ε = (ε1, εb, ε2) is a three-scale 
squeezing parameter and Lε

.= ε1l1 +εblb +ε2l2 is the device thick-
ness that tends to zero as ε → 0. Schematically, potential (2) with 
ε = (1, 1, 1) is shown in Fig. 1 by solid line.

The solution of Eq. (1) with potential (2) can be given in terms 
of the transfer matrix Λε that connects the boundary conditions 
for the function ψ(x) and its derivative ψ ′(x) at x = 0 and x = Lε:(

ψ(Lε)

ψ ′(Lε)

)
= Λε

(
ψ(0)

ψ ′(0)

)
, Λε =

(
λ11 λ12
λ21 λ22

)
, (3)

with the elements

λ11 = cos A1 cos B cos A2 − (k1/kb) sin A1 sin B cos A2

− (k1/k2) sin A1 cos B sin A2 − (kb/k2) cos A1 sin B sin A2,

λ12 = k−1
1 sin A1 cos B cos A2 + k−1

b cos A1 sin B cos A2

+ k−1
2 cos A1 cos B sin A2 − (kb/k1k2) sin A1 sin B sin A2,

λ21 = −k1 sin A1 cos B cos A2 − kb cos A1 sin B cos A2

− k2 cos A1 cos B sin A2 + (k1k2/kb) sin A1 sin B sin A2,

λ22 = cos A1 cos B cos A2 − (kb/k1) sin A1 sin B cos A2

− (k2/k1) sin A1 cos B sin A2 − (k2/kb) cos A1 sin B sin A2.

(4)

Here, the matrix elements, satisfying the relation λ11λ22 −
λ12λ21 = 1, are given in terms of

k1 =
√

E − (h1 − eV eb/2)ε−2
1 , kb =

√
E + eV ebε

−2
b ,

k2 =
√

E − (h2 − eV eb − eV cb/2)ε−2
2 , (5)

A j = k jl jε j , j = 1, 2, and B = kblbεb . The dependence of matrix 
elements (4) on ε is given through Eqs. (5).

Beyond the heterostructure region the wave function ψ(x), sat-
isfying Eq. (1), is given by

ψ(x) =
{

eikx + Rε e−ikx for −∞ < x < 0,

Tε eiγ kx for Lε < x < ∞,
(6)

where Rε and Tε are the reflection and transmission coeffi-
cients, respectively, k .= √

E is the longitudinal wave vector, and
γ = √

1 + eV ec/E . The amplitudes of reflection (Rε
.= |Rε|2) and 

transmission (Tε
.= γ |Tε|2) can be given in terms of elements (4)

as follows



Download English Version:

https://daneshyari.com/en/article/1866837

Download Persian Version:

https://daneshyari.com/article/1866837

Daneshyari.com

https://daneshyari.com/en/article/1866837
https://daneshyari.com/article/1866837
https://daneshyari.com

