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We derive rigorous upper bounds on the transport 〈XY 〉 where 〈·〉 indicates time average, for solutions 
of the Lorenz equations without assuming statistical stationarity. The bounds are saturated by nontrivial 
steady (albeit often unstable) states, and hence they are sharp. Moreover, using an optimal control 
formulation we prove that no other flow protocol of the same strength, i.e., no other function of time 
X(t) driving the Y (t) and Z(t) variables while satisfying the basic balance 〈X2〉 = 〈XY 〉, produces higher 
transport.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Few mathematical models have had as profound an influence 
on the development of nonlinear science over the last half century 
as the Lorenz equations [1]

Ẋ = −σ X + σ Y (1)

Ẏ = r X − Y − X Z (2)

Ż = XY − b Z . (3)

This system arises as a severe modal truncation of Rayleigh’s 1916 
model of two-dimensional buoyancy-driven flow between paral-
lel isothermal plates with stress-free boundaries [2]. In modern 
nondimensional variables Rayleigh’s model is the Boussinesq ap-
proximation to the Navier–Stokes equations,

ω̇ + J (ψ,ω) = σ�ω + σ Raθx (4)

θ̇ + J (ψ, θ) = �θ + ψx (5)

where the J (α, β) = αxβy − αyβx , ω(x, y, t) = �ψ(x, y, t) is the 
vorticity associated with steam function ψ , and θ(x, y, t) is the 
deviation of temperature from the steady linear conduction pro-
file. The boundary conditions are ψ = ψyy = θ = 0 at y = 0
and y = 1 with everything L-periodic in x. The dimensionless 
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parameters of the problem are the Prandtl number σ , the ra-
tio of diffusion of momentum to diffusion of heat in the fluid, 
and the Rayleigh number Ra, a ratio of the driving due to the 
temperature-drop-induced buoyancy force to the damping diffu-
sion coefficients. Rayleigh proved that the steady conduction solu-
tion ψ = 0 = θ is linearly unstable to perturbations ∼ eikx sinπ y
when Ra > Rac(k) = (k2 + π2)3/k2. The smallest critical Rayleigh 
number, 27

4 π4, is achieved in domains of width L = integer × 2
√

2.
Lorenz’s variables are modal amplitudes in the Galerkin trunca-

tion approximation

ψ(x, y, t) =
√

2

π

(
k2 + π2

k

)
X(t) sin kx sinπ y

θ(x, y, t) =
√

2

πr
Y (t) cos kx sinπ y − Z(t)

1

πr
sin 2π y (6)

where the ‘reduced’ Rayleigh number r = Ra/Rac and the domain-

shape parameter b = 4π2

k2+π2 . The time variable is also rescaled ac-

cording to t → (k2 +π2)t . Solutions of Rayleigh’s continuum model 
are reasonably well approximated by Lorenz’s truncation only near 
the primary bifurcation, i.e., for r =O(1), but the differential equa-
tions are nevertheless of theoretical (and historical) interest even 
for r � 1 due to the appearance of chaos in the solutions.

The bulk heat transport is gauged by the Nusselt number Nu, 
the ratio of the sum of the total (conductive plus convective) heat 
flux to the flow-independent conductive flux. The convective heat 
flux is proportional to the correlation between the vertical velocity 
ψx and the temperature θ , which reduces to Nu − 1 = k2+π2

2π2r
〈XY 〉
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for Lorenz’s variables where 〈·〉 indicates the infinite time aver-
age (when the infinite time limit of long-but-finite time averages 
exist). The Nusselt number is a key indicator of the nonlinear re-
sponse of the system to the driving whose strength is measured 
by the Rayleigh number (Ra or r). The classical linear and non-
linear stability results for both Rayleigh’s and Lorenz’s models are 
that the pure conduction state with Nu = 1, respectively ψ = 0 = θ

and X = Y = Z = 0, is absolutely stable for Ra < Rac ≡ r < 1 and 
linearly unstable for Ra > Rac ≡ r > 1.

It is of both fundamental theoretical interest and practical im-
portance for applications to know the dependence of Nu on Ra, σ , 
and L. The high Rayleigh number Nu–Ra relationship characteriz-
ing turbulent convective heat transport is of interest for theory and 
experiment [3] and has remained the focus of mathematical analy-
sis for more than half a century [4–6]. For Rayleigh’s original 1916 
model described above, for example, the most recent rigorous re-
sult is the upper bound Nu < .29 Ra5/12 uniformly in σ and L for 
Ra > 27

4 π4 [7].
The study of rigorous bounds on Nu for solutions of the Lorenz 

equations has received less attention with the notable exceptions 
of Malkus [8], Knobloch [9], and Foias et al. [10] who found that 
the steady state maximizes transport among statistically steady so-
lutions and for invariant measures, and Pétrélis and Pétrélis [11]

who proved that 〈XY 〉 ≤ b (r+σ−√
σ)2

r+σ for any solution. In this let-
ter we present two alternative approaches to establish the im-
proved estimate 〈XY 〉 ≤ b(r − 1), uniformly in σ for r > 1, when 
the long-time limit exists. In case long-time averages do not con-
verge, our result is that the limit supremum of finite-time aver-
ages satisfies the bound. Most significantly this upper bound is 
sharp: it is saturated by the exact steady solutions (Xs, Ys, Zs) =
(±√

b(r − 1), ±√
b(r − 1), r − 1).

In the next section we employ the so-called “background” 
method, originally contrived for estimating bulk averaged trans-
port in solutions of the Navier–Stokes and related equations [5], 
to prove the new upper bound. The subsequent Section 3 intro-
duces and develops a novel optimal control strategy for upper 
bound analysis to reproduce the result: we relax the momentum 
equation (1) and treat X(t) as a control variable constrained only 
by 〈X2〉 = Pe2 to drive the temperature variables via (2) and (3). 
We prove in this setting that 〈XY 〉 ≤ rb Pe2/(b + Pe2). Then auxil-
iary relation Pe2 = 〈XY 〉, from the neglected Eq. (1), can be used 
to connect the optimal transport with solutions of the Lorenz 
equations, yielding the same bound as obtained from the back-
ground analysis. This shows that no time-dependent stirring pro-
tocol, whether it solves the first Lorenz equation (1) or not, trans-
ports more than the steady flow. We also show, in a certain precise 
sense, that the steady stirring strategy is the unique maximizer.

2. Background analysis

We are interested in the r > 1 parameter regime. It is conve-
nient to rewrite the Lorenz equations as

ẋ = −σ x + σ ry (7)

ẏ = x − y − xz (8)

ż = xy − bz (9)

where X = x, Y = ry and Z = rz and the Nusselt number in terms 
of the correlation of x(t) and y(t) is Nu = 1 + k2+π2

2π2 〈xy〉. (Note: 
do not confuse these lower case x and y variables with the spatial 
coordinates in Rayleigh’s model discussed in the introduction.)

It is well known that, after possible initial transients, solutions 
of the Lorenz equations are uniformly bounded in time [12–17]. 
For example

1

2

d

dt

[
1

r2
x2 + y2 +

(
z − 1 − σ

r

)2]

= − σ

r2
x2 − y2 − bz2 + b

(
1 + σ

r

)
z (10)

so that

lim
t→∞

[
1

r2
x2 + y2 +

(
z − 1 − σ

r

)2]

≤

⎧⎪⎪⎨
⎪⎪⎩

(1 + σ
r )2 if min{1,σ , b

2 } = b
2

b2(1+ σ
r )2

4(b−1)
if min{1,σ , b

2 } = 1
b2(1+ σ

r )2

4σ (b−σ )
if min{1,σ , b

2 } = σ .

(11)

Thus for differentiable functions F : R3 → R , long time averages of 
time derivatives satisfy

〈
Ḟ (x, y, z)

〉
T ≡ T −1

T∫
0

[
d

dt
F
(
x(t), y(t), z(t)

)]
dt

= O
(
T −1) as T → ∞. (12)

Hence, averaging time derivatives of 1
2 x2, 1

2 (y2 + z2), and −z we 
deduce the balances

0 = −〈
x2〉

T + r〈xy〉T +O
(
T −1) (13)

0 = −〈
y2〉

T − b
〈
z2〉

T + 〈xy〉T +O
(
T −1) (14)

0 = −〈xy〉T + b〈z〉T +O
(
T −1). (15)

Now write z(t) = z0 + ς(t) where, anticipating the result, we 
choose the time-independent “background” component z0 = r−1

r . 
Substituting this into (14) and (15) yields

0 = −〈
y2〉

T − b
〈
ς2〉

T − 2bz0〈ς〉T − bz2
0 + 〈xy〉T +O

(
T −1) (16)

0 = bz0 + b〈ς〉T − 〈xy〉T +O
(
T −1). (17)

Then the combination (16) + 2z0 × (17) is

0 = −〈
y2〉

T − b
〈
ς2〉

T + bz2
0 + (1 − 2z0)〈xy〉T +O

(
T −1) (18)

so that, adding zero cleverly disguised as 1
r × (13) + r × (18) to 

(r − 1)〈xy〉T , we have

(r − 1)〈xy〉T = rbz2
0 −

〈(
x√
r

− √
r y

)2

+ rbς2
〉

T
+O

(
T −1)

≤ rbz2
0 +O

(
T −1) = b

(r − 1)2

r
+O

(
T −1). (19)

This, in turn, implies

lim
T →∞〈XY 〉T = lim

T →∞ r〈xy〉T ≤ b(r − 1) = XsYs. (20)

Therefore, when the long time limit exists, 〈XY 〉 = limT →∞〈XY 〉T ≤
b(r − 1) as advertised.

As a corollary it is interesting to note that the proof also shows 
that any sustained time dependence in the solutions, whether pe-
riodic or chaotic, strictly lowers the transport. Indeed, the first 
Lorenz equation (1) and the penultimate expression in (19) imply

〈XY 〉T ≤ b(r − 1) − 1

σ 2(r − 1)

〈
Ẋ2〉

T +O
(
T −1) (21)

so that 〈XY 〉 is strictly less than XsYs when 〈 Ẋ2〉 �= 0.
This is illustrated in Fig. 1 where we plot the upper limit real-

ized by the non-trivial steady state solutions along with measure-



Download English Version:

https://daneshyari.com/en/article/1866838

Download Persian Version:

https://daneshyari.com/article/1866838

Daneshyari.com

https://daneshyari.com/en/article/1866838
https://daneshyari.com/article/1866838
https://daneshyari.com

