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Existence criterion of homoclinic trajectories in the Glukhovsky–Dolzhansky system, describing three-
mode model of rotating fluid convection, is obtained. New applications of the Fishing principle are 
developed.
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1. Introduction

In the papers [1–7], the methods of investigation of homoclinic 
trajectories were developed. These methods drawing on the classic 
ideas by Tricomi [8] enabled the development of criteria of exis-
tence along with numerical approaches to computing of the homo-
clinic trajectories. This development made it possible to consider 
the Lorenz, Shimizu–Morioka, Rössler, Lü, Chen, and Rabinovich 
systems [1–7]. The question arises as to whether it is possible 
to obtain the same results for the Glukhovsky–Dolzhansky system, 
describing three-mode model of rotating fluid convection [9]. This 
paper demonstrates that the difficulties, associated with resolving 
this question, can be overcome. To this end, new approaches to the 
investigation of nonlinear dynamical systems have been developed.

The Glukhovsky–Dolzhansky system describes a three-dimen-
sional model of fluid convection inside the ellipsoid(
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a1

)2

+
(

X2
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)2

+
(

X3

a3

)2

= 1.

It is assumed that the ellipsoid rotates with the constant velocity 
Ω0 around its axis a3. The axis has a constant angle α with the 
gravity vector g . This vector is stationary with respect to the el-
lipsoid motion. The temperature difference is generated along the 
axis a1 and a constant value q0 is a gradient of this temperature. 
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Here λ, μ, β are the coefficients of viscosity, heat conduction, and 
volume expansion, respectively.

Three-mode model of convection is obtained by Glukhovsky 
and Dolzhansky [9] in the following form

ẋ = Ayz + C z − σ x

ẏ = −xz + Ra − y

ż = −z + xy. (1)

Here

σ = λ/μ, Ta = Ω2
0 /λ2,

Ra = gβa3q0/2a1a2λμ,

A = a2
1 − a2

2

a2
1 + a2

2

(cosα)2(Ta)−1

C = 2a2
1a2

a3(a2
1 + a2

2)
σ sinα,

x = μ−1ω3, y = gβa3

2a1a2λμ
q1, z = gβa3

2a1a2λμ
q2,

ω3(t) is the projection of the vector of angular velocity of fluid 
rotation on the axis a3, q1(t) and q2(t) are the projections of tem-
perature gradients on the axes a1 and a2, respectively. Here the 
other projections ω1 and ω2 are functions ω1 = − gβa3

2a1a2Ω0
cosαq1, 

ω2 = − gβa3
2a1a2Ω0

cosαq2, q3(t) ≡ 0.
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The parameters σ , Ta, and Ra are Prandtl, Taylor, and Rayleigh 
numbers, respectively.

After two sequential transformations:

x → x, y → C−1 y, z → C−1z,

x → x, y → R − σ

a0 R + 1
z,

z → σ

a0 R + 1
y,

one obtains the following system

ẋ = σ(y − x) − ayz

ẏ = rx − y − xz

ż = −z + xy. (2)

Here a0 = A/C2, R = Ra C ,

a = a0σ
2

(a0 R + 1)2
, r = R

σ
(a0 R + 1). (3)

In what follows, for this system the existence criterion of ho-
moclinic trajectories, similar to the criterion for the Lorenz system 
[1,2], will be developed.

Note that the Glukhovsky–Dolzhansky system is sufficiently dif-
ferent from the Lorenz system. In the Lorenz system, the flow 
of the two-dimensional convection is considered only. In the 
Glukhovsky–Dolzhansky system, the flow of the three-dimensional 
convection is considered which can be interpreted as one of the 
models of ocean flows [9].

2. Preliminaries

Consider a differential equation

dX

dt
= f (X,q), X ∈ Rn, q ∈ Rm, (4)

where f (X, q) is a smooth vector-function, Rn = {X} is a phase 
space of system (4), Rm = {q} is a parameter space of system (4).

Let γ (s), s ∈ [0, 1] be a smooth path in the space of parameters 
{q}. Consider the following problem due to Tricomi [1–8]: Is there 
a point q0 ∈ γ (s) for which system (4) with q0 has a homoclinic 
trajectory?

Recall that the trajectory X(t) of system (4) is said to be homo-
clinic if the relation

lim
t→+∞ X(t) = lim

t→−∞ X(t) = X0

is satisfied.
Consider system (4) with q = γ (s), and let us introduce the fol-

lowing notion:
X(t, s)+ is a separatrix of the saddle point X0 (limt→−∞ X(t, s)+

= X0), with the one-dimensional unstable manifold, X(s)+ is a 
point of the first crossing of a separatrix X(t, s)+ with the closed 
set Ω:

X(t, s)+ ∈ Ω, t ∈ (−∞, T ),

X(T , s)+ = X(s)+ ∈ Ω, Fig. 1.

If such a crossing is lacking, then it is assumed that X(s)+ = ∅. 
Here ∅ is an empty set.

Fishing principle. (See [1–7].) Suppose that for the path γ (s) there 
is (n − 1)-dimensional bounded manifold Ω with the piecewise-
smooth edge ∂Ω that possesses the following properties:

Fig. 1. Separatrix X(t, s)+ , s ∈ [0, s0].

Fig. 2. Separatrix X(t, s)+ , s = s0.

1) for any X ∈ Ω \ ∂Ω and s ∈ [0, 1] the vector f (X, γ (s)) is 
transversal to the manifold Ω ,

2) for any s ∈ [0, 1], f (X0, γ (s)) = 0 and the point X0 ∈ ∂Ω is a 
saddle of system (4),

3) the inclusion X(0)+ ∈ Ω \ ∂Ω is valid (Fig. 1),
4) the relation X(1)+ = ∅ is satisfied,
5) for any s ∈ [0, 1] and Y ∈ ∂Ω \ X0 there exists a neighborhood 

U (Y , δ) = {X ||X − Y | < δ} such that X(s)+ ∈ U (Y , δ).

Theorem 1. (See [1–7].) If conditions 1)–5) are satisfied, then there exists 
s0 ∈ [0, 1] such that X(t, s0)

+ is a homoclinic trajectory of the saddle X0
(Fig. 2).

The Fishing principle can be interpreted as follows. In Fig. 1 is 
shown a fisherman at the point X0 with the fishing rod X(t, s)+ . 
The manifold Ω is a lake surface and ∂Ω is a shore line.

When s = 0, a fish has been caught with the fishing rod. Then 
X(t, s)+, s ∈ [0, s0) is the path of the fishing rod with the fish to 
the shore.

By assumption 5), the fish cannot be taken to the shore ∂Ω\X0
since ∂Ω\X0 is the forbidden zone.

Therefore, only the situation, shown in Fig. 2, is possible (i.e., 
at s = s0, the fisherman has caught a fish). This corresponds to a 
homoclinic orbit.

Remark 1. In the papers [5,7], one more requirement was added to 
the Fishing principle:

6) for all s such that X(s)+ ∈ Ω and for all t ∈ (−∞, T ] there 
exists a number R such that |X(t, s)+| ≤ R . Here X(T , s)+ =
X(s)+ .

However, this condition is always satisfied and consequently it 
is not included in Theorem 1.

Indeed, let us decompose the curve X(s)+ into finite sequences 
of curves:
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