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space than the grid Z2.

We numerically investigate the distribution of extrema of ‘chaotic’ Laplacian eigenfunctions on two-
dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small
number of randomly added edges and show the behavior to coincide with the 1957 prediction of
Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution
using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part
suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with
ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in

© 2014 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Quantum Chaos

Quantum Chaos is concerned with the behavior of high-
frequency Laplacian eigenfunctions

—Au = Eu on compact manifolds (M, g)

and their seemingly chaotic properties. Apart from highly particu-
lar cases which are usually characterized by completely integrable
behavior of the geodesic flow, these eigenfunctions will appear to
be somewhat ‘random’. Indeed, should the behavior be not chaotic,
then usually any small perturbation of the geometry of the domain
will induce chaotic behavior: randomness is the generic case. It is
of great interest to try to understand this randomness by specify-
ing arising invariants. See Fig. 1.
Some central questions of quantum chaos are

(1) whether (and under which conditions on the geometry of the
manifold) the L%-mass of the eigenfunctions tends towards
uniform distribution - recent spectacular breakthroughs are
due to Anantharaman [1] and Lindenstrauss [22].

(2) whether most eigenfunctions behave like ‘random waves’, i.e.
whether for example
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(3) how many nodal domains there are (see [4,5,7] for the ran-
dom wave model and [6,30] for deterministic bounds) and
how their volume is distributed (see e.g. [31]).

The number of nodal domains has received particular interest: in a
highly influential paper by Blum, Gnutzmann and Smilansky [4],
a universality statement for the number of nodal domains has
been conjectured and numerically investigated: a generic Laplacian
eigenfunction associated with the k-th eigenvalue seems to have
~ 0.06k nodal domains. Bogomolny and Schmit [5] have worked
out a percolation model simulating eigenfunctions in which the
observation of Blum, Gnutzmann and Smilansky is confirmed: their
model predicts that the number of nodal domains of the k-th
eigenfunction is distributed with
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k ~0.06k mean and a variance of
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It is not yet understood to what extent these numbers are precise
outside the model (recent numerical work of Konrad [21] suggests
the mean to be ~ 4% smaller); however, they are certainly very
good approximations.

1.2. Chaotic eigenfunctions, local extrema and finite graphs

We are interested in the distribution of the local extrema of a
Laplacian eigenfunction on a two-dimensional smooth surface with
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Fig. 1. An eigenfunction of the Laplacian with Neumann conditions once on [0, 1]% (left) and once on a small perturbation of [0, 1]? (right, the perturbation is not visible).

non-integrable geodesic flow. A cornerstone of existing conjectures
is the random wave heuristic, which asserts that for all practical
purposes a Laplacian eigenfunction should behave like a superpo-
sition of random plane waves

Y1) = arcos((kp, ) — ¢n),

where ay, ¢ are random reals and k is a randomly chosen di-
rection normalized to |k|| = +/E, where E is the energy/eigen-
value. Longuet-Higgins [23] studied this heuristic in a pioneering
1957 paper, which suggests that the n-th Laplacian eigenfunc-
tion on a compact two-dimensional surface should have ~ n/+/3
extrema. The random wave approximation is of fundamental im-
portance as its framework allows for precise computations while
precise mathematical results seem still out of reach: for example,
one would expect (see e.g. Yau [33]) that the nodal length has
(n — 1)-dimensional Hausdorff measure of size ~ vE while the
currently best rigorous results in dimensions > 4 [8,28,29] do not
even rule out the possibility that the nodal length might tend to 0
as E — oo.

It is natural to try simpler examples; a prime candidate is
a reduction to finite graphs G = (V, E). Given a finite, simple,
connected Graph G = (V, E) the natural analogue of the Lapla-
cian is the discrete Graph-Laplacian (see e.g. [9]) given by a
|V | x |V|-matrix L with entries

1 ifi=j
Lij = { 1 !
—(didj)™2

where d; is the degree of the vertex i. The first few eigenval-
ues/eigenvectors of the matrix will then approximate the first few
eigenvalues/eigenfunctions of the Laplacian with Neumann bound-
ary condition (for details we refer to [26]). It is not difficult to see
that as the graph increases in size, it may be used to approximate
the given geometry to any arbitrary degree of accuracy; however,
counting nodal domains on graphs is rather difficult. Clearly, if two
vertices u, v are joined by an edge e u ~, v and the eigenfunction
satisfies f(u)f(v) <0, one would say that the edge crosses the
nodal domain - the lack of continuity does not allow for an imme-
diate transfer of the definition from the continuous case. Indeed,
nodal domains of eigenfunctions on graphs are an ongoing field of
great interest (see e.g. Davies, Gladwell, Leydold and Stadler [13],
Dekel, Lee and Linial [14] or the survey [3]) but difficulty in trans-
ferring even very classical theorems from the continuous to the
discrete setting poses a difficulty. In contrast, an extremum of a
function is topologically simpler than that of a nodal domain and
more easily generalized to the setting of a graph.

otherwise,

Contribution 1. Our first contribution is that grid graphs with a
small number of randomly added edges behave like continuous
surfaces with respect to the number of extrema of eigenfunctions
and recover the Longuet-Higgins prediction. We also computed
random wave approximations on both T2 and S? to allow for com-
parison.

Using the fact that grid graphs with a small number of ran-
domly added edges seem to provide a second way (the other being
the random wave approximation) to create essentially ‘chaotic’ be-
havior, we use both ways to try to understand the way the extrema
are distributed in space. We hasten to emphasize that graphs have,
of course, been used by many people to describe chaotic behav-
ior (see e.g. a paper of Smilansky [27], where d-regular graphs
are employed); one possible advantage of using grid graphs with a
random number of edges is their simplicity (the downside being,
of course, that expander graphs, to give just one example, come
with many additional properties which are not present in, say, the
case of the grid graph.)

When studying the distribution of local extrema in space, we
use discrepancy as a quantitative measure of regularity. Discrep-
ancy is the standard measure in theory of uniform distribution (cf.
classical books of Niederreiter [24]| and Drmota and Tichy [17]) and
has further applications in the theory of quasi-Monte Carlo inte-
gration. A point set with a small discrepancy is thus both well
distributed from an abstract point of view as well as very suitable
for numerical integration of a function with controlled oscillation.

Contribution 2. Extrema of chaotic Laplacian eigenfunctions are
more regularly distributed with respect to discrepancy than the
(suitably rescaled) classical grid Z? (Fig. 2). In particular, they
are better suited for numerical integration than the extrema
of non-chaotic eigenfunctions (the extrema of the eigenfunction
sinnmxsinnmwy of —A on [0, 1]% are a translation of a rescaling of
the grid Z2).

The rest of the paper is structured as follows: in Section 2 we
describe our heuristic reasoning for why to employ grid graphs
with randomly added edges to create quantum chaos, Section 3
shows that these graphs are able to reproduce the prediction of
Longuet-Higgins on the number of local extrema, Section 4 intro-
duces the discrepancy and describes the numerical results about
the spatial distribution of Laplacian eigenfunction using both ran-
dom wave models and the grid graphs with randomly added
edges; technical comments and details about the implementation
are given in the final section.
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