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A maximum entropy (ME) method to generate typical scale-free networks has been recently introduced. 
We investigate the controllability of ME networks and Barabási–Albert preferential attachment networks. 
Our experimental results show that ME networks are significantly more easily controlled than BA 
networks of the same size and the same degree distribution. Moreover, the control profiles are used 
to provide insight into control properties of both classes of network. We identify and classify the driver 
nodes and analyze the connectivity of their neighbors. We find that driver nodes in ME networks have 
fewer mutual neighbors and that their neighbors have lower average degree. We conclude that the 
properties of the neighbors of driver node sensitively affect the network controllability. Hence, subtle 
and important structural differences exist between BA networks and typical scale-free networks of the 
same degree distribution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The scale-free character of complex networks has recently been 
the focus of much attention. Many models to generate scale-free 
networks have been proposed [1–5], the most famous of which 
is the Barabási–Albert (BA) model of preferential attachment [1]. 
Preferential attachment means that new nodes attach preferen-
tially to the (usually older) nodes with higher degree. To accurately 
represent the much wider spectrum of real networks, many mod-
ified preferential attachment mechanisms have been introduced, 
including nonlinear preferential attachment [6] and local prefer-
ential attachment [7,8]. In addition, many alternative mechanisms 
for preferential attachment have been proposed in recent years 
[9,10]. Goh et al. [11] use the load exponent to construct networks 
with different values of γ , which is valid for both undirected and 
directed cases. Park et al. [12,13] propose a self-organizing mech-
anism to generate scale-free networks. Despite this proliferation 
of scale-free network models, it remains unclear how likely (in a 
probabilistic sense) are realizations of each model [14–16].

Since the advent of various algorithms to generate scale-free 
networks, one of the most closely examined properties of such 
networks has been their controllability. The venerable field of con-
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trol has found fertile new ground in examining the controllability 
of large dynamical systems that can be described by networks of 
simpler components. A system (here a network of coupled low-
dimensional dynamical systems) is said to be controllable if it can 
be driven from an arbitrary initial condition to an arbitrary final 
state in finite time with bounded perturbations. Controllability of 
complex networks is an issue of primary importance in various 
fields, and has attracted much interest in recent years [17–20]. As a 
combination of control theory and network science, exploring net-
work controllability can deepen our understanding of dynamics of 
complex systems, and ultimately enable us to control them. While 
preferential attachment persists as a default generative proxy for 
scale-free networks, we find that the controllability of such net-
works is much worse than what one we would expect for most 
(connected) networks with a given power-law degree distribution.

While many phenomena have been attributed to the scale-free 
nature of network degree distribution, it is not always clear to 
what extent these phenomena are properties generic to networks 
with a power-law degree distribution, or, whether these proper-
ties are more peculiar to a particular network generation model. 
That is, for a given degree distribution, one can construct many dif-
ferent networks conforming to that degree distribution. The same 
is true in particular for the many generative growth models. It 
is possible to grow a network converging to a given degree dis-
tribution in many different ways — and often one achieves quite 
different classes of networks. This is true, in particular, for power-
law degree distributions. Because of the particular enthusiasm with 
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which scale-free networks have been studied it is important to 
recognize exactly which networks one is describing [21]. Many 
networks share the same degree distribution and it is clear that 
degree distribution alone is insufficient to characterize network 
structure. Other properties also play an important role in the func-
tion and dynamics of networks [15] — a trivial example of this is 
the minimum degree. Consequently, we cannot ensure that partic-
ular network properties are due to the scale-free property alone.

In the next section we introduce our computational algorithm. 
In Section 3 we present our results and in Section 4 we conclude.

2. Algorithm

Deciding how to randomly generate a typical scale-free network 
with an arbitrary given degree distribution is a necessary first step 
in addressing this problem. By typical we mean a randomly chosen 
network from the space of all networks conforming to our partic-
ular family of scale-free networks. Hence, we need to define that 
family: in particular, we restrict our interest to connected networks 
with no self-loops or multiple edges. If a randomly chosen network 
with a particular degree distribution also has these properties, we 
call it viable. In the remainder of this paper our primary interest 
is in networks that satisfy each of these constraints. Aside from 
being viable, a typical network also needs to have two other prop-
erties: the probability (or likelihood) of such a network occurring 
is large, and the network is both random and unbiased. The BA al-
gorithm meets the first two properties, but it does not achieve the 
third [21]: the BA algorithm is biased. Low (and negative) assorta-
tivity in the BA network indicates the nature of this bias. Hubs are 
necessarily interconnected because these will always grow from 
the initial seed network — a rich club is ensured by the growth 
process [22]. Because the growth process is (almost always) termi-
nated after a finite time, the last-added low-degree nodes have an 
excessive likelihood of being connected to the biggest hubs. These 
are properties peculiar to the BA growth method, and not the pre-
scribed degree distribution.

To address these constraints, a maximum entropy method has 
recently been proposed [15]. This method applies a standard 
Markov-Chain Monte Carlo approach to sample the given degree 
distribution. Although this method is efficient for small networks 
(an in that case has been shown to converge to a maximum en-
tropy sampling of the space of possible networks), an easier al-
ternative algorithm has been proposed by adding the constraint 
that the given degree histogram is constant (i.e. one first sam-
ples the histogram and then performs network perturbations over 
that fixed histogram) [23]. This algorithm is divided to two steps: 
First, generate a viable network with the given degree distribution; 
Second, apply a MCMC process with only the edge-switching algo-
rithm shown in Fig. 1. They provides us with an efficient approach 
to generate a typical scale-free network with a given degree his-
togram. This simple computational expedient of first sampling the 
degree histogram and then apply edge-switching (while ensuring 
continued connectivity) and an MCMC process to sample a graph 
with a fixed histogram, provides equivalent results. Asymptotically
the results of this approach converge to the original algorithm [15]. 
Because these typical scale-free networks are generated by a max-
imum entropy method [24,16], we henceforth refer to this as a 
maximum entropy (ME) network.

The experiments we report here are based on a direct com-
parison between the BA network generated via the preferential 
attachment algorithm [1] and a ME network with the same de-
gree distribution (to constrain our ME networks to be equivalent 
to the BA realizations, we use the degree distribution of the BA 
network when generating the ME realization). Our attention is re-
stricted to BA networks as this is the most widely used algorithm 
and provides a useful baseline for comparison. First, we use the 

Fig. 1. The example of edge-switching [25]: (a) undirected network, and (b) directed 
network.

preferential attachment algorithm to generate an undirected scale-
free network (BA), which is used as an initial network. Second, 
an edge-switching algorithm [25–28] (shown in Fig. 1(a)) is per-
formed on that initial seed network to generate a random viable 
network with exactly the same degree sequence.

To be precise, the edge-switching algorithm proceeds as fol-
lows. Choose four distinct nodes i, j, k and l, and let A be 
the adjacency matrix, such that A(i, j) = A( j, i) = 1, A(k, l) =
A(l, k) = 1, A(i, k) = A(k, i) = 0, A( j, l) = A(l, j) = 0, and then 
switch the links to A(i, j) = A( j, i) = 0, A(k, l) = A(l, k) = 0, 
A(i, k) = A(k, i) = 1, A( j, l) = A(l, j) = 1. To guarantee that the 
network is connected, we check the network connectivity af-
ter each edge-switching step. Only edge-switches that preserve 
connectivity are permitted. Hence, after sufficiently many edge-
switching steps, we obtain a corresponding random scale-free net-
work (ME). Finally, the first and second processes are repeated to 
obtain a sufficiently large sample of BA–ME pairs.

When considering network control, it is usual to also consider 
directed networks. While the algorithm proposed in Refs. [15,21]
generates undirected ME networks, generating directed networks is 
a little more complicated. First, we use the preferential attachment 
algorithm to generate two distinct undirected scale-free networks, 
G1 and G2. We number the nodes in both G1 and G2 randomly. 
The link direction of G1 is assigned from smaller label index to 
larger while G2 assigns links moving from the larger label index 
to the smaller. Following these index labels, the networks G1 and 
G2 are combined to one network (that is, the node labeled i in G1 
and the node labeled i in G2 are combined into a single node). Sec-
ond, a similar edge-switching algorithm (Fig. 1(b)) is performed on 
the network to generate a random viable network while preserving 
node in-degree and out-degree. Let A be the adjacency matrix, the 
edge-switching algorithm chooses four distinct nodes i, j, k and l, 
such that A(i, j) = 1, A(k, l) = 1, A(i, l) = 0, A(k, j) = 0, and then 
switch the links to A(i, j) = 0, A(k, l) = 0, A(i, l) = 1, A(k, j) = 1. 
Last, repeat the first two steps to get enough directed BA–ME pairs.

Now, we can move on to our central question, whether the 
ME network is more or less controllable than BA and if so, why? 
From this we can conclude which properties of controllability are 
inherent to the scale-free degree distribution and which are pecu-
liar to the BA growth model. Controllability of complex networks 
is an issue of primary importance in various fields, and has at-
tracted much interests in recent years. The most popular method 
for linear dynamical systems is Kalman’s controllability matrix [29,
30], but this requires a brute-force search to identify the mini-
mum number of driver nodes, which makes it difficult to adapt 
to large networks and complex systems. Therefore, a general and 
more practical framework for controllability of complex directed 
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