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We formulate a universal method for solving an arbitrary quantum system which, in the Bargmann 
representation, is described by a system of linear equations with one independent variable, such as one-
and multi-photon Rabi models, or N level systems interacting with a single mode of the electromagnetic 
field and their various generalizations. We explain three types of conditions that determine the spectrum 
and show their usage for two deformations of the Rabi model. We prove that the spectra of both models 
are just zeros of transcendental functions, which in one case are given explicitly in terms of confluent 
Heun functions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Our goal and result is a general method which allows to prop-
erly determine eigenvalues and eigenfunctions for a wide class of 
quantum systems. It is adequate for quantum optical setting where 
the Bargmann representation allows for natural parametrization of 
the electromagnetic degree of freedom and the resulting differen-
tial equations are ordinary and linear. We then show its applica-
tion to two systems, which are generalizations of the famous Rabi 
model characterized by the Hamiltonian

H = a†a + μσz + λσx
(
a† + a

)
, (1)

where a, a† are the photon annihilation and creation operators, μ, 
λ are the level separation and photon–atom coupling constant, and 
σx , σz are the Pauli spin matrices.

This fundamental system describes interaction of a two-level 
atom with a single harmonic mode of the electromagnetic field. 
Originally, it was introduced to describe the effect of a rapidly 
varying, weak magnetic field on an oriented atom possessing nu-
clear spin [1]. It has been recently applied to a great variety of 
physical systems, including cavity and circuit quantum electro-
dynamics, quantum dots, polaronic physics and trapped ions, see 
[2–7].
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Usually coupling between “natural” two-level atoms and the 
single bosonic mode of radiation is quite weak and the rotat-
ing wave approximation is valid. It leads to a solvable, the so-
called Jaynes–Cummings, model. However, recent achievements in 
circuit quantum electrodynamics have enabled the exploration of 
such regimes, e.g., the ultra-strong and the deep strong coupling 
regimes of light–atom interaction so that the Jaynes–Cummings 
model begins to fail. Effects of counter-rotating terms cannot be 
more neglected and terms containing simultaneous excitation or 
deexcitation of both the atom and the field must be taken into ac-
count [2–6]. The second reason for its recent renaissance is the 
realization that the strong coupling regimes might require more 
interaction terms than just those mentioned above. One such gen-
eralization, the so-called Rabi model with broken symmetry, was 
proposed in [7] and its additional term was justified physically as 
spontaneous emission by the atom. The Hamiltonian of this gener-
alization is

Hε = a†a + μσz + λσx
(
a† + a

) + εσx. (2)

This will be the first example we study. The second one was pro-
posed in [8,9]. It includes a nonlinear coupling term between the 
atom and the cavity:

H =
(
ω + U

2
σz

)
a†a + ω0

2
σz + gσx

(
a† + a

)
. (3)

An alternative physical motivation of the additional term is that it 
could arise in the dispersive limit of the Jaynes–Cummings model. 
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However, the first possibility is more accessible experimentally as 
described in [8]. We chose to keep the notation of that paper, 
for the second model, to facilitate comparison. A quick inspection 
shows that the parameters of models (2) and (3) are related via

ω = 1, ω0 = 2μ, g = λ. (4)

Although the spectrum of the classical Rabi model has been 
determined by numerical and approximate methods before, see, 
e.g., [10–13], there still is a lack of a general approach which 
works well for arbitrary parameters values and which has a solid 
mathematical foundations. Recently several approaches devoted to 
determination of the spectrum of this and similar models have 
appeared, see, e.g., [7,14–17] and references therein. The authors 
have also applied the present method as outlined in the prelimi-
nary preprint [18], to determine the full spectrum in [19], includ-
ing some isolated points that are usually overlooked.

It should be underlined that the Rabi model is one of the sim-
plest ones in quantum physics. This is why the knowledge of its 
exact eigenvalues and eigenfunctions is of great theoretical impor-
tance. Although the question about the spectrum and eigenstates 
comes from physics, it is a mathematical one. It is obvious that un-
justified methods may lead to incorrect physical interpretations of 
considered models.

In the Bargmann–Fock representation, see [20], the two-com-
ponent wave function ψ = (ψ1, ψ2) is an element of Hilbert space 
H2 =H×H, where H is the Bargmann–Fock Hilbert space of en-
tire functions of one variable z ∈ C. The elegant connection with 
the standard picture is that the annihilation and creation opera-
tors a, and a† become ∂z and multiplication by z, respectively, for 
clearly [∂z, z] = 1. The scalar product in H is given by

〈 f , g〉 = 1

π

∫
C

f (z)g(z)e−|z|2 d
(
Re(z)

)
d
(
Im(z)

)
.

It is worth mentioning that this space was also introduced, inde-
pendently of Bargmann, by J. Newman and H.S. Shapiro [21,22]. 
However, their motivation was connected with works of Ernst Fis-
cher [23,24]. They tried to generalize a very beautiful construction 
of E. Fisher valid for polynomials.

The Hilbert space H has several peculiar properties. Let us 
mention two of them:

1. f (z) ∈ H does not imply that f ′(z) ∈H.
2. f (z) ∈ H does not imply that zf (z) ∈ H.

To understand these rather strange properties we have to recall 
some definitions and facts from the theory of entire functions, 
see [25,26]. If f (z) is an entire function, then to characterize its 
growth, the following function is used:

M f (r) := max|z|=r

∣∣ f (z)
∣∣. (5)

We omit the subscript f later on, because the investigated function 
is known from the context. If for an entire function f (z) we have

lim
r→∞ sup

ln(ln M(r))

ln r
= 	, with 0 ≤ 	 ≤ ∞, (6)

then 	 is called the order (or growth order) of f (z). If, further, the 
function has positive order 	 < ∞ and satisfies

lim
r→∞ sup

ln M(r)

r	
= σ , (7)

then we say that f (z) is of order 	 and of type σ .
Assume that f (z) belongs to H, then one can prove the follow-

ing facts [20]:

1. f (z) is of order 	 ≤ 2.
2. If 	 = 2, then f (z) is of type σ ≤ 1

2 .

If 	 = 2 and σ = 1
2 , then the question whether f (z) ∈ H requires 

a separate investigation. Particularly in the mentioned case when 
f (z) ∈H but f ′(z) /∈ H the function is of order 	 = 2 and type 
σ = 1

2 . For additional details see [27].
The usefulness of this representation can immediately be seen 

with the harmonic oscillator, which represents the radiation. The 
time-independent Schrödinger equation for energy E is simply 
Hψ(z) = zψ ′(z) = Eψ(z) and one immediately recovers the or-
thonormal eigenbasis as {zn/

√
n! }n∈N . The connection with the 

usual space of square-integrable functions of q is given by the in-
tegral kernel exp(−(z2 + q2)/2 + √

2qz) which is one of the forms 
of the generating function for the Hermite polynomials. Each zn

thus corresponds to the appropriately normalized wave function
e−q2/2 Hn(q). In this basis the operator a is just an infinite matrix 
with entries on the superdiagonal, so all the mentioned Hamilto-
nians can be constructed as tensor products of such matrices with 
the sigma matrices. This allows for direct numerical diagonaliza-
tion. However, the open question that we wish to tackle is how to 
determine the spectrum rigorously with as explicit exact formulas 
as possible.

In the Bargmann–Fock representation energy E belongs to the 
spectrum of the problem, if and only if, for this value of E the 
equation Hψ = Eψ has entire solution ψ = (ψ1, ψ2) ∈ H2. We 
want to find, if possible, a formula for those values of E .

As we already mentioned, in the Bargmann–Fock representa-
tion, the considered models are described by a system of linear 
differential equations. We shall see that the equations in question 
will involve regular singular points and a possibly irregular point 
at infinity on the complex z plane. The conditions that the consid-
ered system has a solution with components belonging to H, are 
roughly threefold:

• Local conditions. At each regular singular point z = s there ex-
ists at least one solution which is holomorphic on an open set 
containing s.

• Global conditions. Among all solutions which are locally holo-
morphic, we can find at least one at each singular point such 
that they are a holomorphic continuation of one another.

• Normalization conditions. The entire function obtained in the 
above way must have finite Bargmann norm.

Our method gives straightforward and natural compatibility condi-
tions in term of Wronskian determinants and was first formulated 
in our unpublished preprint [18]. For simplicity sake we chose the 
two models that can be given either as a system of two first order 
equations or one equation of the second order. The application to 
higher order equations, as those investigated in [28] or [29], will 
appear in future work [30].

In the Bargmann representation, the first considered model is 
described by the following system of two differential equations

(z + λ)
dψ1

dz
= (E − ε − λz)ψ1 − μψ2,

(z − λ)
dψ2

dz
= (E + ε + λz)ψ2 − μψ1. (8)

We will use this model to illustrate the single equation approach 
below. The second system takes the form(
ω + U

2

)
zψ ′

1 + ω0

2
ψ1 + gψ ′

2 + gzψ2 = Eψ1,(
ω − U

2

)
zψ ′

2 − ω0

2
ψ2 + gψ ′

1 + gzψ1 = Eψ2. (9)
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