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In this letter, we study the influence of observational noise on recurrence network (RN) measures, the 
global clustering coefficient (C) and average path length (L) using the Rössler system and propose the 
application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. 
We find that for an appropriate recurrence rate (R R > 0.02) the influence of noise on C can be minimized 
while L is independent of R R for increasing levels of noise. Indications of structural complexity were 
found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than 
L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural 
properties of EEG in normal and pathological states.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many natural systems are inherently governed by nonlinear dy-
namics. For example, the dynamical behavior of individual neurons 
in the brain is governed by threshold and saturation phenom-
ena, which give rise to nonlinearity [1]. Thus, nonlinear time se-
ries analysis is an important tool in understanding the dynamical 
properties of the brain using electroencephalography (EEG), which 
provides temporal resolution in the millisecond range. One of the 
most important applications of nonlinear EEG analysis itself is in 
epilepsy [2,3] because of the dynamic nature of the disease [4]. 
Furthermore, the underlying dynamics of epileptic EEG are highly 
nonlinear when compared to normal background EEG activity [5].

Nonlinear dynamical systems (also known as complex systems) 
have two main properties – determinism and recurrence [6]. A de-
terministic dynamical system can be defined as a system whose 
future behavior can be accurately predicted, given sufficient knowl-
edge for the current state of the system exists. Let the current state 
of the system be given as zn , such that zn ∈ M ⊆ R

m , where M
is an m-dimensional phase space attractor [7]. If there is an evo-
lution operator Φ : M × Z �→ M such that Φ(zn, t) = zn+t , then 
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the system described by (M, Φ) is said to be deterministic if the 
evolution operator Φ can precisely predict the state zn+t , using 
the information present in zn [7]. Recurrence is another property 
which can be used to characterize the nonlinear dynamics of a 
system [6]. Recurrence plot (RP) is a method for visualizing recur-
rences and was originally introduced by Eckmann et al. [8]. An RP 
is a two-dimensional graphical representation of a matrix (known 
as recurrence matrix – binary, square, and symmetric) that has an 
entry of one for times when two states are neighbors (as defined 
by some proximity criterion) in phase space and zero elsewhere 
[9]. A simple visual analysis of RPs can give an insight into the dy-
namics of the system. For example, the RP of a system exhibiting 
periodic dynamics contains long and non-interrupted diagonals, 
while for chaotic dynamics, the diagonals are much shorter [6]. 
On the other hand, for a stochastic system, the RP looks erratic 
and filled with many isolated black dots [10]. Apart from visual 
analysis, one can also derive quantitative measures for RPs using 
recurrence quantification analysis (RQA) [11,12] to investigate the 
dynamical properties of the system. For an excellent and detailed 
review on RPs, the reader is referred to [6]. Since the information 
from real world systems is usually in the form of a time series, 
one has to reconstruct the phase space using suitable methods like 
time-delay embedding [13] before applying RP based approaches. 
Note that, apart from RP-based methods, a host of other nonlinear 
methods have been introduced for time series analysis. Some of 
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the most important and popular techniques are correlation dimen-
sion [14], Lyapunov exponent [15] and entropy-based measures 
[16]. An attractive feature of an RP based approach compared to 
other nonlinear approaches is that, it can be applied to short and 
non-stationary data [9].

In the last two decades, complex network theory has emerged 
as a popular tool to analyze complex and spatially extended sys-
tems [6]. It has found applications in melange of fields ranging 
from sociology to biological sciences [17]. Using network mea-
sures (local and global) [18,19], one can characterize the network 
structure and function of a complex system that is composed of 
many interacting elements [19]. Mathematically, a complex net-
work can be represented by a graph G = (N ,L), where the set 
N ≡ {n1,n2, ...,nN } is known as vertices or nodes and the set 
L ≡ {l1, l2, ..., lK } are the edges or links between those nodes [18]. 
For simplicity, we consider undirected graphs only. By integrat-
ing complex network theory with the concept of recurrence from 
dynamical systems theory, a new field of network-based time se-
ries analysis has been introduced that deals with the topological 
characterization of the time series using complex networks [9,
20]. Proximity networks are based on the concept of recurrences. 
Connectivity in such networks is defined in a data adaptive lo-
cal manner [21]. Under proximity networks, a class of networks 
known as recurrence networks, which include k-nearest-neighbor 
networks, adaptive nearest neighbor (ANN) networks [22,23], and 
epsilon-recurrence networks (ε-networks) [9,20], reinterpret the 
binary recurrence matrix as an adjacency matrix of the complex 
network [6]. Specifically, an attractor’s neighborhood is defined in 
terms of either fixed number of edges (k-nearest networks or ANN 
networks) [8,22–24] or fixed phase space volume (ε-networks) [9]. 
Such networks are also known as fixed mass and fixed volume net-
works respectively.

By quantifying the topology of the recurrence network using lo-
cal and global measures from graph theory [25,26], the dynamical 
properties of the underlying complex system can be characterized 
[20]. Using global graph theoretic measures like the global clus-
tering coefficient (C ) and the average path length (L) for G(N, K ), 
Zou et al. [27] studied the identification of complex periodic win-
dows in the Rössler system using ε-networks. It was found that for 
continuous-time dynamical system, C and L are in general greater 
for periodic dynamics compared to chaotic dynamics. Specifically, 
L is much smaller for a system exhibiting chaotic dynamics com-
pared to periodic dynamics. In another study by Shimada et al. 
[24], using fixed mass networks (k-nearest neighbor networks) it 
was shown that chaotic dynamics can be characterized by small 
world networks (high C and small L). Xiang et al. [28] studied 
fixed mass networks (ANN networks) and found that L scales lin-
early with the network size for low-order periodic dynamics, but 
exponentially for chaotic dynamics. Also, the value of C is gener-
ally higher for periodic dynamics compared to chaotic dynamics.

Investigating the ability of network measures like C and L to 
characterize the dynamics of a system in the presence of observa-
tional noise is an important research question, as the real world 
data is seldom noise free. Thiel et al. [29] studied the influence of 
observational noise on RQA measures and found that these mea-
sures are susceptible to noise level of 20% or more (noise level 
is given as the standard deviation of the underlying noise-free 
process) and they proposed a threshold ε that is five times the 
standard deviation of the noise [29]. However, it has not been 
sufficiently studied yet, how the addition of observational noise 
can cause a change in the measures of recurrence networks like C
and L for various threshold parameter (for example, various phase 
space volumes in case of ε-networks or number of edges in case of 
ANN networks). Also a study involving surrogate analysis method 
to test for the structural complexity of the data in the presence of 
noise by network measures like C or L has hitherto not been ad-

dressed. In general, a systematic study investigating the effect of 
observational noise on recurrence network measures and the abil-
ity of such measures to characterize the dynamical systems under 
increasing levels of noise is missing.

As mentioned before, nonlinear analysis is an important tech-
nique to understand the dynamical properties of the brain, es-
pecially in disorders like epilepsy. Andrzejak et al. [1] applied 
nonlinear measures like nonlinear prediction error P and effec-
tive correlation dimension D2,eff to different classes of EEG data: 
healthy EEG with eyes open and closed, EEG recordings between 
the seizures which is known as interictal EEG and EEG recordings 
of epileptic seizures which is known as ictal EEG. They reported 
strongest indication of nonlinearity for ictal EEG, while healthy EEG 
(eyes open) was compatible with quasilinear process. Gautama et 
al. [30] applied the method of delayed vector variance (DVV) for 
the data described in [1] and found indications of nonlinearity for 
both intracranial and surface EEG recordings. Given the potential of 
recurrence networks in characterization of dynamical systems and 
its reported advantages over other traditional non-linear measures 
in terms of its applicability to short and non-stationary data, its 
application in investigating the dynamical properties of EEG signals 
has not been fully explored. We have previously used the dataset 
described in [1] and characterized the underlying dynamics using 
fixed mass recurrence networks [31]. We found that the networks 
associated with ictal EEG are regular with high C and L, while the 
networks associated with interictal and surface EEG signals show 
small world property. However, we did not consider the effect of 
varying the threshold on the derived network measures. Also, we 
did not perform any surrogate analysis as reported in [1] to ana-
lyze structural properties of different classes of EEG signals.

Surrogate testing is an important tool in signal analysis [32]. 
In general, to use surrogate techniques for detecting nonlinear-
ity, a null hypothesis is defined, which assumes that the original 
signal is compatible with a linear, stochastic, and stationary pro-
cess, which is observed through a possibly nonlinear measurement 
function [1]. Based on this null hypothesis, a large number of sig-
nals (known as surrogates) are generated from the original signal 
such that the surrogates have the same linear autocorrelations as 
the original signal, but are otherwise random [32]. We then calcu-
late a discriminating statistic for both the original signal and the 
surrogates. If the discriminating statistic of the original signal devi-
ate from the surrogates, the null hypothesis is rejected. Rejection of 
the null hypothesis implies that the original signal is not consistent 
with the assumption of a linear, stochastic and stationary process 
and could indicate the presence of a possible nonlinear structure 
with a certain confidence level. Since recurrence network measures 
(like C and L) describe the structural properties of the attractors 
underlying a time series [33], these measures can be used as a 
discriminatory statistic to test for the structural complexity of the 
original data in conjunction with surrogates.

In this letter our aim is to investigate the ability of global net-
work measures like C and L derived from recurrence networks to 
characterize dynamical systems under increasing levels of noise us-
ing simulated data and then to apply this method to study the 
structural properties of experimental signals like the EEG data. We 
organize our study to answer two specific questions

1. At what noise level is the structural complexity and detection 
of dynamical transitions as measured by recurrence network 
measures obscured?

2. Can recurrence network measures be used to analyze the dif-
ferent structural properties of healthy and epileptic EEG sig-
nals?

To answer question 1, we simulate the Rössler system to display 
periodic and chaotic dynamics, to which we systematically add in-
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