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In this paper, we have investigated the motion of a heated viscoelastic fluid layer in a rectangular tank 
that is subjected to a horizontal periodic oscillation. The mathematical model of the current problem 
is communicated with the linearized Navier–Stokes equation of the viscoelastic fluid and heat equation 
together with the boundary conditions that are solved by means of Laplace transform. Time domain 
solutions are consequently computed by using Durbin’s numerical inverse Laplace transform scheme. 
Various numerical results are provided and thereby illustrated graphically to show the effects of the 
physical parameters on the free-surface elevation time histories and heat distribution. The numerical 
applications revealed that increasing the Reynolds number as well as the relaxation time parameter leads 
to a wider range of variation of the free-surface elevation, especially for the short time history.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Usually, fluid in a container is influenced by the motion of the 
container. Such fluid assumes the form of waves, a phenomenon 
that is referred as sloshing. Liquid sloshing is such a complicated 
phenomenon. Depending on the type of disturbance and container 
shape, the free liquid surface can experience different types of 
motion including simple planar, non-planer, rotational, irregular 
beating, symmetric, asymmetric, quasi-periodic and chaos [1]. The 
sloshing of fluid in a tank is a well-studied problem that has appli-
cations in a number of practical situations. As indicated by Virella 
et al. [2], the problem is relevant to the safety of transporting 
fluids in tankers; Hermann and Timokha [3] also stress its rel-
evance to the automotive, aerospace and shipbuilding industries. 
Fluid sloshing in road tankers may result in overturning of the ve-
hicle, and resonant movement of fluid within ship cargo tanks is 
also of concern. These practical considerations are discussed fur-
ther in the review article by Ibrahim and Pillipchuk [1]. They are 
reinforced by Frandsen [4], who also discusses the use of fluid-
filled tanks to act as dampers on the motion of city buildings in 
high winds.

If sloshing is prolonged or accentuated, the wall of the con-
tainer is damaged by the body force of the fluid, which in turn, 
results in unstable behavior of the whole mechanical system. 
Therefore, we need to clearly understand the sloshing-behavior 
characteristics of fluids. Published research into the sloshing phe-
nomenon of general fluids theoretically analyzes the characteristics 
of hydrodynamic behavior through numerical analysis. It also ad-

dresses the design of apparatus and fluid–structure interaction, to-
wards the reduction of sloshing. Liu and Lin, and Ikeda and Ibrahim 
analyzed sloshing using numerical analysis [5,6]. Abbas and Man-
sour investigated the damping of sloshing that arises from the use 
of baffles in fluid containers [7]. Also, Kim, Lee and Cho investi-
gated optimization design technique for sloshing and free surface 
tracking for nonlinear liquid sloshing [8,9]. However, sloshing of 
general fluid is hard to control by itself; for reducing sloshing, 
additional structural elements are required in the fluid container 
[10–12].

Surface waves are primarily dominated by gravity and in the 
absence of solid boundaries viscosity usually has very little effect 
on the flow over a short period in time or over a short distance in 
space [13]. In other words, the effects of viscosity may become im-
portant only after many wave periods or after many wavelengths. 
It is quite common, therefore, that free surface flows of inviscid 
liquids are analyzed by the velocity potential theory. The problem 
becomes somewhat different when a wave encounters a body in 
its path, because of the sheared flow created by the body surface. 
But even in that case it is usually a common practice to deal with 
the free-surface effects and viscous effects separately. A typical ex-
ample is linear wave interaction with an offshore structure. The 
interaction between the wave and the body can be analyzed by ei-
ther wave-diffraction theory without viscosity or by viscous-flow 
theory without the free-surface effect, depending on the ratios of 
the characteristic dimension of the body to the wavelength and the 
wave amplitude [14]. Cases, however, do arise where the combined
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effect of the free surface and viscosity is important, some of which 
have been highlighted by Yeung and Yu [15]. A significant case is 
the flow near the liquid line of a floating body, i.e., at the intersec-
tion of the body surface and the free surface. Another example 
is the free surface flow of highly viscous fluid. In studying the 
behavior of the free surface interacting with the viscosity within 
a bounded region, it is assumed initially, common in potential 
flow analysis, that disturbance of the fluid is small and the flow 
is governed by the linearized Navier–Stokes (NS) equations. The 
justification and limitations of such an approximation have been 
discussed by Mei [16]. The analysis there is, however, based on 
the framework of boundary-layer theory. Such a case is easier than 
the case where the viscous effect is taken into account in the 
entire fluid domain. One difficulty in combined free-surface and 
viscous analysis lies at the intersection of the body surface and 
the free surface. Take a fixed body as an example: the no-slip con-
dition in the NS equations suggests that the fluid particle there 
should remain stationary, but it can be observed experimentally 
that fluid moves up and down along the body surface. This diffi-
culty was in fact mentioned by Lamb [17], and resolving it requires 
extensive experimental study such as that undertaken in [18]. Our 
current understanding of the flow structure near the intersection 
is still limited and many methods used to deal with the intersec-
tion are not entirely satisfactory. A commonly used scheme for 
water wave/structure interaction is based on two steps: (1) the 
NS equations are solved with the no-slip condition imposed on 
the body surface and (2) the motion of the intersection point is 
tracked through interpolation from the points on the free surface 
and near the intersection. This procedure has some clear defects. 
To ensure the result from the interpolation is accurate enough, the 
points used must be as close as possible to the intersection. How-
ever, if these points are sufficiently close to the body surface (for 
example when an extremely fine mesh is used in this region), the 
result will be the same as that based on the no-slip condition. Be-
cause of this difficulty, the analysis in this work remains modest. 
The no-slip condition on the body is replaced by a no-shear-force 
condition. The intention here is to show how the free surface will 
interact with the viscous flow, and results based on this model 
would be useful for this purpose. Indeed it was argued in [19] that 
the condition on the side walls may have little effect on the wave 
when analyzing Faraday’s instability. Furthermore, the equivalent 
of a zero shear force condition on the side walls was also used by 
Loh and Rasmussen [20], who solved the full Navier–Stokes equa-
tions for this problem based on the finite-difference method.

When the temperature at the interface between two immiscible 
fluids is not uniform, a flow may be induced due to the tempera-
ture dependence of surface tension. This flow is usually called ther-
mocapillary convection or Marangoni convection and can arise in 
a liquid–gas or a liquid–liquid interface subjected to a temperature 
gradient. As a consequence, the dependence of the surface tension 
upon the local temperature will create a shear stress on the liquid 
surface, which by viscous traction results in a Marangoni convec-
tion in the bulk of the liquid. In recent years, thermocapillary 
convection in systems with free boundaries have attracted much 
attention, mainly owing to their relevance in many processes of 
technological interest. Experimental study of thermocapillary con-
vection is complicated by the presence of strong gravity convection 
under earthbound conditions and by residual mass–force accelera-
tions and vibrations under microgravity conditions on board rocket 
probes and spacecraft. The simplest convective flow appears when 
a free surface of a single extended liquid layer is subject to a hori-
zontal temperature gradient. As soon as a lateral heating is applied 
a basic flow settles down in the liquid layer and the resulting tem-
perature profile is highly nonlinear. This flow destabilizes through 
an oscillatory instability that induces wave motions in simple flu-
ids called hydrothermal waves (Smith and Davis [21]). Smith and 

Davis [21] showed that the instability mechanism even in this sim-
ple case is quite complex, resulting from the interplay between 
the basic flow and thermal or velocity disturbances. At low Prandtl 
numbers (Pr), hydrothermal waves propagate in a direction per-
pendicular to the horizontal temperature gradient, while at high 
Pr, they advance parallel to the temperature gradient. At inter-
mediate Pr, the waves form an angle with the streamwise direc-
tion (Smith [22]). Later on, some authors (Parmentier et al. [23], 
Mercier and Normand [24]) extended these calculations by taking 
into account buoyancy effects and thermal transfer properties at 
the interface. Daviaud and Vince [25] reported the first observa-
tion of hydrothermal waves in a shallow layer of 0.65 cSt silicon 
oil. These observations were complemented by other authors con-
sidering different liquids and geometries (Mukolobwiez et al. [26]
and Pelacho et al. [27]).

Although there is a numerous number of works has dealt with 
the study of the liquid sloshing, there remains considerable points 
are not still understood. This is mainly because sloshing is driven 
by free surface motion and related to many problems such as 
fluid–ship interaction, bubble formation, and probabilistic aspects. 
However, the reader may be referred to a rich series of papers 
on resonances and liquid sloshing, including the two and three di-
mensions, by Bridges et al. (see, e.g., Refs. [28–31]). In these works, 
they have discussed the free oscillation in a nearly square con-
tainer for the case of standing waves. Also, they are interested in 
sloshing in shallow water in vessels that are undergoing a general 
rigid body motion.

The motivation of the present work is to explore analytically 
the non-Newtonian influence together with the heat transfer on 
the surface wave profile formatted at the free interface of a finite 
viscoelastic liquid layer within a horizontally oscillated rectangular 
container. From this point of view, the current paper represents an 
extension to some previous papers such as [32], that deals with the 
effect of the viscosity on the sloshing of the free surface of a New-
tonian isothermal liquid layer [33], where the problem concerning 
with the nonlinear sloshing dynamics of an isothermal ideal liquid 
layer within a horizontally oscillating rectangular tank, and Her-
czyński and Weidman [34] who have presented an analytical and 
experimental study on the periodic oscillation of free containers 
driven by an inviscid liquid sloshing where the rectilinear horizon-
tal motion of the containers is assumed to be frictionless.

The problem is formulated mathematically in Section 2. The ba-
sic state solution of the problem is obtained in Section 3. We then 
proceed to obtain the solution of the perturbed linearized problem 
by means of Laplace transforms. Some important limiting cases are 
investigated at the end of this section. In Section 4, we have pre-
sented the procedure of the numerical approach utilized to assign 
the perturbed quantities in terms of the time parameter and then 
some numerical computations are presented to demonstrate the 
effects of the various parameters on the behavior of the system. 
The concluding remarks are summarized in Section 5.

2. Problem formulation

We consider the problem of viscoelastic nature fluid flow 
described by the Maxwell constitutive relation in a rectangular 
tank of length l, which undergoes a horizontal oscillation motion. 
A cartesian coordinate system O –xz is defined so that its origin is 
located at the center of the mean free surface and z-axis points 
upwards. The vertical sidewalls are insulated and the base of the 
tank is maintained at constant temperature Tb while, the fluid free 
surface is subjected to Newtonian cooling with external ambient 
temperature Ta and convective heat transfer coefficient hg . In ad-
dition, we will suppose that interfacial tension varies linearly with 
temperature, which can be expressed as follows [35]

σ = σ0 − Γ (T − Ta), (1)
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