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The paper examines scalar advection caused by a point–vortex pair encountering a fixed point vortex 
in a uniform flow. The interaction produces two types of vortex motion. First is unbounded as the pair 
moves unrestrictedly after encountering the fixed vortex. The scalar exchanging between the pair’s bubble 
and fixed vortex’s neighbourhood is numerically estimated. Second is bounded as the pair’s vortices 
periodically oscillate about the fixed vortex. The pair’s periodic motion perturbs scalar motion causing 
a portion of scalar trajectories to manifest chaotic behaviour. We analyse scalar transport using Poincaré 
sections, which reveal regular and chaotic transport regions.
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1. Introduction

Passive scalar advection due to point vortices is a long stud-
ied problem that has a multitude of applications in fluid me-
chanics. For instance, a great number of vortices are used as 
low-dimensional models of turbulence [1–7], while a few vortices 
are often considered as the simplest models exhibiting irregular 
(chaotic) dynamics. Without any constraints, point–vortex systems 
become irregular when there are more than three vortices [8–12]. 
However, it is the three-vortex case when the passive scalar advec-
tion turns chaotic [13,14]. With certain symmetric configuration, 
the four-vortex problem is integrable but also causes chaotic pas-
sive scalar advection [15]. We use the term chaotic implying that 
two initially close phase trajectories in the corresponding phase 
space tend to diverge exponentially in a finite time while no 
stochastic impact affects the system [16,17]. Thus our system is 
presumed to be fully deterministic.

However, if one is interested in a configuration when additional 
constraints are superimposed to a point–vortex system, the irreg-
ular dynamics can manifest itself at a smaller number of point 
vortices. For instance, if a background shear flow is superimposed 
to a point–vortex system, just three vortices start moving chaoti-
cally [18], while passive scalar advection turns chaotic due to just 
two point vortices [19–23].

In general, different constraints are superimposed to model cer-
tain physical processes. For instance, it turned out, that the point–
vortex systems can give a lot of qualitative information to facilitate 
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studying the mesoscale dynamics of oceanic vortices [24–32] when 
the low-scale dynamics can be neglected. And this is in effect 
when one considers the interacting vortices as coherent structures, 
which remain rather intact for a given time. Thus, if one can dis-
tinguish the interacting vortices rather clearly during all the inter-
acting time, then the point–vortex model may provide with some 
insight into the processes under investigation. The possibility of 
distinguishing coherent structures for a long time is rather strong 
in the ocean as it is generally quasi-two dimensional, which allows 
one to exploit the quasi-geostrophic approximation [33].

A number of works consider a fixed point vortex as the sim-
plest model of topography that induces a closed recirculation zone 
in its vicinity [34–36]. Given any background flow, such a closed 
recirculation zone, which may be thought of as a topographically 
trapped vortex, gets enveloped by a material line called the sepa-
ratrix that divides distinct regions of the flow. Such models can be 
useful for instance to study the vortex dynamics associated with 
vortex and wave trapping by topography. This work addresses the 
point–vortex model of a similar interaction, namely the dynamics 
of a vortex pair encountering isolated topography. All the vortices 
in the model are assumed to be point vortices. It is established that 
this configuration produces two types of the vortex pair motion 
[37,38]. First is an unbounded propagation, when the pair moves 
to infinity in an almost rectilinear path after being deflected by 
the topography, and second is a bounded regime, when the pair 
oscillates periodically about the topography. The latter is of main 
interest in this study since it provides a periodically perturbed dy-
namical system that manifests the chaotic dynamics. Thus, numer-
ical analysis of scalar transport in both unbounded and periodic 
motion regimes is the main goal of this work.
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2. The dynamics of a point–vortex dipole encountering a fixed 
point vortex

To begin, we review the dynamics of a point–vortex dipole 
encountering a fixed point vortex. We assume the pair to be a 
structure, that consists of two counter-rotating point vortices with 
equal strengths μ. This pair is directed at a fixed point vortex with 
strength σ , that plays the role of isolated topography. The stream-
function of the flow, then, has a Hamiltonian form

ψ = σ ln(r0) + μ ln

(
r1

r2

)
, (1)

where r0 = ((x − x0)
2 + (y − y0)

2)1/2 is the distance from a fluid 
particle (x, y) to the fixed vortex (x0, y0), r1 = ((x − x1)

2 + (y −
y1)

2)1/2, r2 = ((x − x2)
2 + (y − y2)

2)1/2 are the analogous distances 
to the corresponding vortex of the pair. Then, taking into account 
that variables (x, y) are canonical, the governing equations for the 
motion of a fluid particle ensue,
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To obtain governing equations for the motion of the vortices, 
one needs to introduce corresponding vortex coordinates (x1, y1)

or (x2, y2) instead of variables (x, y) in (2), and, then, to omit the 
singularities caused by the self-action of a vortex on itself. The 
governing equations for the vortex trajectories thus are

dxi

dt
= −σ

(yi − y0)

r2
0i

+ μ
(yi − y j)

r2
i j

,

dyi

dt
= σ

(xi − x0)

r2
0i

− μ
(xi − x j)

r2
i j

, (3)

where i = 1, 2, j = 1, 2, i �= j, and r0i = ((xi − x0)
2 + (yi − y0)

2)1/2, 
ri j = ((xi − x j)

2 + (yi − y j)
2)1/2.

Although system (3) allows significant simplifications, in the 
general case, it still cannot be integrated in quadratures, and there-
fore should be treated numerically. It is established [38] that, in 
accord with system (3), the pair can perform two distinct types 
of motion. First is an unbounded motion, when the pair moves 
towards the fixed vortex, then, interacts with it, but after the in-
teraction it propels itself further to infinity in an almost rectilinear 
way. Second is a bounded periodic motion, when the pair fluctu-
ates about the fixed vortex. As to particle advection, both regimes 
are somehow interesting since in the unbounded regime the pair 
interacts with the fixed vortex only for a finite time, and during 
this time, a portion of particles initially located inside the pair’s 
bubble, a fluid region the pair drags along as it self-propagates, 
can leave it while particles from the vicinity of fixed vortex replace 
them and are then carried off the fixed vortex. Hence, exchange of 
particles between the pair’s bubble and the fixed vortex’s vicin-
ity occurs. The second regime, on the contrary, is more intricate 
as the periodic motion of the pair plays the role of a periodic 
perturbation to fluid particles resulting in chaotic advection, an 
exponential divergence of initially close particles in a finite time. 
Examples of the vortices’ trajectories are plotted in Fig. 1. Figs. 1a, 
and 1b correspond to the unbounded motion case as σ = 30, 
μ = 10, x1(0) = 30.1, y1(0) = 0, x2(0) = −15, y2(0) = 0, and the 
bounded motion case as σ = 30, μ = 10, x1(0) = 30.1, y1(0) = 0, 
x2(0) = −14.19178, y2(0) = 0, respectively.

First, we look into the unbounded motion case, when the vortex 
pair after interacting with the fixed vortex advances to infinity. It 
was shown [38], that system (3) can be integrated in elementary 

functions if the pair’s vortices are located symmetrically relating to 
the fixed vortex. Let us represent system (3) in polar coordinates 
r2 = x2 + y2, and θ = arctan y

x ,
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r2
12

,

dr2

dt
= μr1 sin(θ1 − θ2)

r2
12

,

dθ1

dt
= −μ

r1 − r2 cos(θ1 − θ2)

r1r2
12

+ σ

r2
1

,

dθ2

dt
= μ

r2 − r1 cos(θ1 − θ2)

r2r2
12

+ σ

r2
2

. (4)

Then, the first two relations yield that angular momentum M =
μ(r1

2 − r2
2) ≡ const. Thus, supposing symmetrical initial distribu-

tion of the pair’s vortices relating to the fixed vortex r1(0) = r2(0)

then M = 0, i.e. r1 = r2 for every instant in time. Hence, the in-
creasing solution ensues

r1(t) = r12

2

(
1 + Φ2(t)

)1/2
,

θ1(t) = 2σ − μ

μ

(
arctanΦ(t) − arctan

(
4

(
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r12
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− 1

)1/2)
,

(5)

where Φ(t) = 2μ

r2
12

t − (4(
r1(0)
r12

)
2 − 1)1/2, and r12 is the constant dis-

tance between the pair’s vortices. From (5), it is clearly seen that, 
for every symmetric initial distribution of the pair’s vortices relat-
ing to the fixed vortex, the pair moves to infinity at a constant 
angle provided 2σ = μ.

The bounded motion case is periodical in a reference frame 
rotating with a constant angular velocity. This angular velocity, 
which depends on strengths σ , μ, and the vortices’ initial posi-
tions, can be figured out by taking advantage of the fact, that the 
system rotates over constant angle Θ in one period T of the radii 
r1, r2 changing. Transiting to the reference frame rotating with an-
gular velocity Ω = Θ/T , we obtain the periodic phase trajectories 
like those shown in Fig. 1c, which are plotted for the same val-
ues of the parameters as in Fig. 1b. Considering the pair motion 
in the rotating reference frame, it is clear that it is periodic as the 
trajectories form closed loops. So, further we will study how the 
periodic motion of the pair affects fluid particle advection occur-
ring in the vicinity of the dipole–topography interaction.

3. Passive scalar advection

In the case of the unbounded propagation, a useful quantity 
to assess advection properties is the number of the particles that 
have initially been located inside the pair’s bubble, and then, af-
ter the vortex pair interacts with the fixed vortex, are stayed en-
trapped in the vicinity of the fixed vortex. Thus, if the number of 
particles varies, one can compare the transport properties of the 
flow for different initial conditions.

First, one needs to specify an initial distribution of markers that 
will be followed as the flow unfolds. To that end, we first recall the 
dynamics of a self-propelling pair in a uniform unbounded fluid 
[39], which corresponds to the problem under study when the pair 
is infinitely far from the fixed vortex so its influence becomes neg-
ligible. Since in this case all the directions are equivalent, let the 
pair move along the x-axis, then it moves rectilinearly and uni-
formly with velocity U = − μ

2y0
, where (0, y0), (0,−y0) are the 

initial positions of the vortex with strength μ and −μ respectively. 
The governing equations for the vortices are simply x1 = x2 = Ut , 



Download	English	Version:

https://daneshyari.com/en/article/1866875

Download	Persian	Version:

https://daneshyari.com/article/1866875

Daneshyari.com

https://daneshyari.com/en/article/1866875
https://daneshyari.com/article/1866875
https://daneshyari.com/

