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Recent theoretical works have predicated the appearance of Weiss oscillations in the magnetoconductivity 
with a one-dimensional periodic electrical or magnetic modulation in graphene. This paper further 
explores the electrostatic field effect on the Weiss oscillations in the presence of crossed uniform in-
plane electric field and perpendicular magnetic field that is weakly and periodically modulated along 
one direction. We find that the oscillation amplitude (OA) of Weiss oscillations and the value of 
conductivity are both shown to increase as the electric field E increases for a given magnetic field B . More 
interestingly, the electric field leads to an abrupt disappearance of the Weiss oscillations, when the value 
of electric to magnetic field ratio approaches a threshold value, i.e., γe = E

υF B = 1. These phenomena, not 
known in the conventional 2D electron gas, are a consequence of the anomalous spectrum of electron in 
graphene.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Owing to the progress in experimental methods, graphene (or 
a graphite monolayer) is now attracting increasing interest in the 
field of the physics of electronic systems with reduced dimension-
ality [1–4]. It is promising for application in nanoelectronics be-
cause of the exotic chiral features [5–9] in its electronic structure. 
To date, graphene has led to some of the most startling discov-
eries in condensed matter physics in recent years. In particular, 
these anomalous phenomena are found to be tied to the remark-
able ‘relativistic-like’ spectrum of electrons and holes in graphene, 
which makes graphene important and interesting in physics. One 
of those that have been experimentally testified is the abnormal-
ity of the 2D quantum Hall effect [10–12]. Earlier, it was found, in 
the conventional 2DEG, that the artificially created periodic poten-
tials in the submicrometer range led to the appearance of Weiss 
oscillations in the magnetoresistance [13–15]. This type of oscil-
lation was shown to be periodic in the reciprocal magnetic field 
(∼1/B) like the Shubnikov–de Haas (SdH) oscillations, which ap-
pear due to the interplay of the quantum Landau levels with the 
Fermi energy, and serve as a powerful technique to investigate the 
Fermi surface and the spectrum of electron excitations. However, it 
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should be stressed here that such two types of oscillations present 
a different relation between the period and the electron density 
(ne), i.e., the period for Weiss oscillations varies with 

√
ne , but 

with ne for SdH oscillations. Essentially, the Weiss oscillations are 
a consequence of the commensurability of the electron cyclotron 
orbit diameter at the Fermi energy and the period of the above 
electrical modulation. Recently, Matulis and Peeters have further 
investigated the electrical transport of Dirac electrons in graphene 
with the electrical modulation [16]. Along the same lines, Tahir 
and Sabeeh have studied low temperature magnetotransport of 
electrons in graphene subjected to the magnetic modulation [17]. 
However, these researches do not involve the electrostatic field ef-
fects on the magnetoresistance in graphene.

To date, many investigations have focused their attention on 
the electronic and magnetic properties of graphene and graphene 
nanoribbons (GNRs) [18–31]. Specifically, Lukose et al. [18] have 
firstly found the Landau spectrum in graphene gets scaled by an 
electric field dependent dimensionless parameter (γe = E/BυF ), 
i.e., as γe increases, the Landau levels (LLs) spacings decrease and 
finally the Landau spectrum collapses at threshold value γe = 1. 
Thereafter, Peres and Castro [19] have obtained the full algebraic 
solution of the mathematical problem. Furthermore, the authors 
in [20–22] have explored the electromagnetic properties of GNRs, 
revealing spectacular effects arising from the confinement of elec-
tron and hole gases. One of the most remarkable findings is that 
electrons and holes can be specularly reflected, such as billiard 
particles, at the edges of a GNR [23]. Besides, some recent works
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report on the individual and combined effects of an electric and 
magnetic field on the ballistic transport and optical conductance of 
GNRs [24,25]. Zhang and Ma et al. [26,27] have predicted the mod-
ulation of the de Haas–van Alphen (dHvA) effect in graphene and 
GNRs by electric field, which has drawn much attention in both 
theoretical and experimental groups [28–31]. Especially, Reis et al. 
[28–30] have further studied the electrocaloric and magnetocaloric 
effects on graphenes and GNRs in the presence of external fields, 
which is a quite meaningful case. Moreover, the magnetocaloric ef-
fect has been also explored with a periodic and harmonic magnetic 
field in [32].

Motivated by this, we calculate the diffusive conductivity in the 
presence of crossed uniform in-plane electric field and perpen-
dicular magnetic field that is weakly and periodically modulated 
along one direction. Furthermore, we compare our result with that 
without electric field to highlight the electric field effect on low 
temperature magnetotransport of Dirac electrons in graphene. Fi-
nally, we find the Weiss oscillations in the magnetoconductivity 
are more robust with respect to the electric field. Specifically, the 
oscillation amplitude (OA) of Weiss oscillations and the value of 
conductivity both increase as E increases with a given B , but the 
opposite behavior for the Shubnikov–de Haas (SdH) oscillations is
seen. More interestingly, the Weiss and the SdH oscillations both 
abruptly vanish at γe = 1, which is attributed to the anomalous 
electric field effect on the spectrum of graphene.

This paper is organized as follows. In Section 2, a brief intro-
duction is given to the 2D model for graphene, and the precise 
energy eigenvalues and eigenstates in the presence of crossed uni-
form electric and magnetic fields are obtained analytically. In Sec-
tion 3, the electric field effects on the electrical conductivity with 
periodic magnetic modulation in graphene are described, and the 
results compared with that without electric field. Furthermore, the 
asymptotic expression is derived for the electric field dependent 
magnetoconductivity. In the last section, we present brief summary 
and conclusions.

2. Energy spectrum

In present work, we directly start from the massless Dirac equa-
tion pμγ

μ
ikΨk = 0 in the lowest order approximation to calculate 

the energy eigenvalues and eigenstates for graphene electrons in 
the presence of crossed uniform electric and magnetic fields. Our 
method is strikingly different from that employed by the authors 
in [18], who have solved the problem by transforming the original 
system into a case with a null electric field, in terms of a Lorentz 
boost transformation. But we should point out that the eigenstates 
for graphene electrons in [18] are not the integrated form with the 
electric field. However, the precise eigenstates are crucial for the 
calculation of the diffusive conductivity and thus we should firstly 
solve this problem here. In crossed electric [E =(−E, 0, 0), U =
Eex] and magnetic [B =(0, 0, B), A = (0, Bx, 0)] fields, the low en-
ergy excitations are described by the 2D Dirac-type Hamiltonian 
[18,26,27],

H0 = υF α · (−ih̄∇ + eA) + IeEx, (1)

in which the α are the Pauli matrices and υF characterizes the 
Fermi velocity (i.e. υF = 1.0 × 106 m/s). Following the Landau and 
Lifshitz [33], we have{
−2mυ2

F

[
p2

x

2m
+ mω2

c

2
(x − xc)

2
]

+ (Bε − p y E)2

B2(1 − γ 2
e )

+ eh̄Bυ2
F αz + ieh̄υF Eαx

}
Ψ = 0, (2)

in which we define the cyclotron frequency as ωc =
eB(1 − γ 2

e )1/2/m with γe = E/BυF , and the centers of the 

x-dependent orbitals as xc = [�2
c ky − εγ 2

e /(eE)]/(1 − γ 2
e ) with the 

magnetic length �c = √
h̄/eB . The symbol ε denotes the Dirac 

equation eigenvalue. The solutions of Ψ are hence the product 
of orbital [φn(x, y)] and spinor [χ±(E, B)] functions, since the first 
two terms depend only on orbital coordinates, and the last two 
on spinor coordinates. Since the present coordinate system is cho-
sen with E along the x direction, the orbital eigenfunctions may 
be taken as plane waves in the y direction, and thus we seek 
the solutions in the separable form Ψ ∼ exp(iky y)φn(x)χ±(E, B). 
Substitution of such Ψ into Eq. (2) inevitably leads to the two 
equations, respectively, for φn(x){
−2mυ2
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φn(x)

≡ ηnφn(x) (3)

and for χ±(E, B)

(
eh̄Bυ2

F αz + ieh̄υF Eαx
)
χ±(E, B) ≡ η±χ±(E, B). (4)

The first term of Eq. (3) is the familiar one-dimensional harmonic 
oscillator Hamiltonian, so the eigenvalues and eigenfunctions are 
known. Solving Eq. (4), we can get the eigenvalues

η±(E, B) = ±eh̄Bυ2
F

√
1 − γ 2

e , (5)

and the eigenspinors

χ T+ = (γe�m, 0, 0, i�m�n),

χ T− = (0, γe�m, − i�m�n, 0) (6)

with

�m = (
γ 2

e + � 2
n

)−1/2
,

�n = 1 − (
1 − γ 2

e

)1/2
. (7)

Finally, the precise Ψ could be obtained in the following form

Ψn,ky = exp(iky y)√
2L y�

∗
c

(−iΦn−1(ξ)

Φn(ξ)

)
χ±(E, B), (8)

in which

Φn(ξ) = e−ξ2/2√
2nn!√π

Hn(ξ) (9)

is expressed in the normalized Hermitian polynomials. We ex-
press ξ = (x + xc)/�

∗
c with �∗

c = lc/(1 − γ 2
e )1/4 and xc = �2

c ky −
sgn(n)

√
2|n|�∗

c γe , which can be compared with the conventional 
expression xcon

c = �2
c ky − υ2

F γ
2

e m/eE . The imposition of periodic 
boundary conditions Ψ (x, y + L y) = Ψ (x, y) over some suitably 
large length L y leads to the allowed values ky = 2π�/L y (� =
0, ±1, ±2, ...). The localized character of the bound-state eigen-
functions φn(x) ensures that the electronic motion is bounded 
in the x direction, so that no runaway electrons develop under 
these conditions. Finally, the equation (ηn +η±)Ψ = 0 provides the 
eigenvalue

εn,ky = sgn(n)ωg

√|n| + h̄υF γeky, (10)

where the integer n denotes the LLs, and ky is a good quantum 
number corresponding to the translation symmetry along the y
axis. The symbol ωg is given by ωg = √

2h̄υF (1 − γ 2
e )3/4/�c with 

|γe| < 1 yielding to the demand of Lorentz covariant. Eq. (10) re-
veals that the electric field could modulate the LLs spacing and 
eventually cause a collapse at γe = 1, as demonstrated in [18,19,26,
27]. From another perspective, according to the Bohr–Sommerfeld 
quantization condition 

∫ x2
x1

√
(ε − eEx)2/υ2

F − (p y − eBx)2dx =
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