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We apply the Casimir model for boundary-limited heat conduction to single-crystal rods oriented near 
phonon-focusing caustics. We show that rods with axes close to the direction of an external conical 
refraction caustic, a highly degenerate caustic that exists for certain hexagonal crystals, exhibit a thermal 
conductivity that diverges logarithmically on approaching the caustic. For rods with axes close to the 
directions of the more generic fold and cusp caustics, the conductivity remains finite, but displays 
singular behavior with a 1/2- or 1/3-power law falloff with angular deviation from the caustic. Moreover, 
in the direction of a fold caustic, the Casimir conduction is not necessarily a maximum. Numerical results 
are presented for zinc, with the quasi-transverse branch providing examples of the external conical 
refraction and fold caustics, and in a certain sense, also the cusp caustic.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Casimir model [1] for boundary-limited thermal conduc-
tion has enjoyed considerable success over the years in accounting 
for the thermal conductivities of dielectric rods at low tempera-
tures, when boundary scattering of thermal phonons dominates 
over bulk scattering, and the effective phonon mean free path l̄
is controlled by the lateral dimensions of the rod. The model leads 
to an expression for the conductivity of a rod similar to the famil-
iar kinetic theory result for bulk thermal conductivity

κ = 1

3
C V v̄l̄, (1)

where v̄ is a suitably averaged phonon velocity, and C V is the spe-
cific heat at constant volume. Well below the Debye temperature, 
since κ ∝ CV , the conductivity falls off as the cube of the absolute 
temperature T , a result that has been confirmed in numerous mea-
surements, see e.g. Refs. [2–4]. In recent years the main focus of 
attention has shifted to the burgeoning field of nanoscale thermal 
transport [5–7], where even at room temperature the boundary 
scattering of phonons can play a significant role. Studies of ther-
mal conduction in nanowires and other nanostructures [5–13] have 
stimulated renewed interest in boundary-limited thermal conduc-
tivity at low temperatures [14–16].
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The important influence of elastic anisotropy on thermal con-
duction in the Casimir regime was first recognized in the semi-
nal paper by McCurdy, Maris and Elbaum [17]. In an elastically 
anisotropic medium the acoustic slowness surface, S(s) = 0, i.e. 
the surface representing the directional dependence of the phonon 
slowness s = k(ω)/ω, where k is the wave vector and ω the an-
gular frequency, is non-spherical. As a consequence, the phonon 
group or ray velocity V = ∇kω(k), which is normal to the slow-
ness surface, is not in general parallel to the wave vector. This 
gives rise to the phenomenon of phonon focusing, whereby the 
ray vectors associated with a uniform distribution of phonon slow-
nesses are strongly concentrated in directions normal to regions of 
the slowness surface where the curvature is small. The resulting 
phonon flux intensity from a point source is proportional to the 
Maris phonon enhancement factor [18–20]

M = 1/
(
s3 V |K |), (2)

where K = 4αβ is the Gaussian curvature and 2α and 2β are the 
principal curvatures of the slowness surface. A point on the slow-
ness surface where one of the principal curvatures passes through 
zero on changing sign maps onto a caustic where M = ∞. Phonon-
focusing caustics—sharp maxima in intensity for certain directions 
corresponding to zero Gaussian curvature of the slowness surface—
are indeed observed in many measured phonon images [21,22].

It might seem plausible that for a rod oriented in such a fo-
cusing direction, the Casimir conductivity should be higher than 
elsewhere, but this is not invariably the case, as we show below. 
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The study [17] and subsequent works [23–29] reported numerical 
calculations of directionally dependent conductivities in a number 
of crystals of various symmetries and shapes of cross section, and 
experimental work [30–32] has provided evidence in support of 
the predictions. However, a clear physical understanding of the 
role of phonon-focusing caustics in Casimir conduction has hith-
erto been missing. What happens if the rod axis lies exactly in, 
or very close to the direction of a caustic? Will the thermal con-
ductivity of an infinite rod oriented in a caustic direction remain 
finite? Will we observe different behavior for different types of 
caustics? Addressing these questions constitutes the substance of 
this paper.

We give attention to the three most common phonon-focusing 
caustics: (a) the line or fold caustic, which is to be found in the 
direction of a sharp fold in the acoustic wave surface, i.e. the sur-
face representing the directional dependence of the group velocity, 
(b) the cusp caustic where two line caustics meet to form a cusp, 
with the cusp separating an inner region where locally the wave 
surface is triplicated, from the outer region where it is comprised 
of a single sheet, and (c) the external conical refraction caustic, 
which is displayed by certain hexagonal crystals, for which there 
is a cone of slowness vectors, all of which map onto the same 
group velocity vector pointing along the principal axis, and being 
the apex of a cone in the wave surface.

We establish that the conductivity of a long rod exhibits sin-
gular behavior when oriented in the vicinity of a phonon caustic, 
and identify the specific types of singular behavior for the three 
caustic types mentioned above. This singular behavior is deter-
mined by the local geometry of the slowness surface associated 
with the caustic. Superimposed on this singular component of κ , 
is a smoothly varying background which all phonons with a com-
ponent of group velocity parallel to the rod axis contribute to, and 
which can therefore be regarded as a property of the global geom-
etry of the slowness surface. For illustrative purposes we present 
the calculated directionally dependent effective phonon mean free 
path of a hexagonal zinc crystal rod, which provides examples of 
the three types of singularities. As expected, these singular features 
are less pronounced than in ballistic transport from a point source 
in a bulk solid. We find that the Casimir conductivity of an infi-
nite rod oriented in the direction of a fold or cusp caustic remains 
finite. Surprisingly, the Casimir conduction is not necessarily even 
a maximum in the direction of a fold caustic. On the other hand, 
the thermal conductivity of an infinite rod oriented near the exter-
nal refraction caustic diverges logarithmically on approach to the 
caustic direction. Exactly in the direction of the external conical 
refraction caustic, the Casimir conductivity becomes infinite, im-
plying that in practice the conductivity will be limited either by a 
finite length of the rod or by remnant bulk scattering.

2. Evaluation of Casimir model for anisotropic media

We follow a procedure established by McCurdy et al. [17] (their 
Eqs. (5), (11) and (12)) for calculating the thermal conductivity κ
of an infinitely long anisotropic solid cylinder of radius R much 
larger than the dominant phonon wavelength, i.e., the Casimir 
conductivity. It assumes the absence of bulk scattering, perfectly 
diffuse scattering at the surface, and cross section isotherms. At 
temperatures much lower than the Debye temperature it renders 
the formula

κ = 4RkB

45

(
kB T

h̄

)3 3∑
j=1

Λ j; Λ j =
∫

4π

s3
j V 2

j‖dΩ

|V j⊥| , (3)

where the sum is over the three acoustic branches, kB is Boltz-
mann’s constant and h̄ is Planck’s constant, V j‖ is the phonon 
group velocity component parallel to the axis of the rod and V j⊥

the component perpendicular to the axis. The integral is over all 
directions of the slowness s j , dΩ being the solid angle element in 
which the slowness vector lies. Representing the thermal conduc-
tivity by Eq. (1), the effective phonon mean free path, normalized 
to the diameter of the rod, is in turn given by [17]

	 = 	̄/2R = 1

3π2〈s2〉
3∑

j=1

Λ j, (4)

with v̄ interpreted as 〈s2〉/〈s3〉, where the averages are taken over 
all directions and for the three acoustic branches. 	 is unity in 
the case of an isotropic solid, but varies with direction for an 
anisotropic solid. In highlighting the effects of phonon focusing on 
Casimir conduction, there can be advantage in displaying the vari-
ation in direction of 	 rather than κ .

The issue of partial specularity has been examined both from 
a theoretical [17] and experimental [4] point of view, and evi-
dence points to an increase in specularity and hence reduction 
in diffuse scattering as the temperature is lowered and the dom-
inant phonon wavelength increases. There is also evidence for an 
increase in specularity for phonons incident on the surface at graz-
ing angles. Detailed models have been proposed for the influence 
of surface roughness on scattering [13]. The influence of the shape 
of the cross section of the rod has also been examined by vari-
ous authors, and attention has also been given to finite length to 
lateral dimension aspect ratio. While recognizing the validity of all 
these concerns, the aim of the present paper is to specifically high-
light the influence of elastic anisotropy, through phonon focusing, 
on boundary-limited thermal conduction. It serves our purposes 
under the circumstances to treat all other factors in as simple a 
manner as possible, i.e. by adopting the assumptions enunciated in 
the previous paragraph.

Inspection of Eq. (3) reveals that important contributions to 
the boundary-limited thermal conductivity in an infinitely long rod 
oriented in a particular direction in an anisotropic medium come 
from phonons of each branch for which |V j⊥| 
 |V j‖|, i.e. phonons 
whose group velocities lie close to the axis of the rod. These are 
associated with portions of the slowness surface oriented normal 
to the axis of the rod. We proceed to calculate what this contri-
bution is for a small angular cone of phonon slowness vectors of a 
particular branch (the branch index j is henceforth suppressed) for 
which locally the slowness surface equation can be approximated 
by a low order polynomial expression of the form [33]

S(s) = (s3 − s30) + {
α(s1 − s10)

2 + β(s2 − s20)
2 + · · ·}

= ŝ3 + {
α ŝ2

1 + β ŝ2
2 + · · ·} = 0, (5)

where s0 = (s10, s20, s30) is the point on the slowness surface 
where the normal points exactly along the rod axis. We will label 
this the s3 direction, and take s1 and s2 to be located along the 
directions of the principal curvatures 2α and 2β of the slowness 
surface at s0. For elliptic points on the slowness surface (α and 
β of the same sign) and hyperbolic points (α and β opposite in 
sign) it is sufficient to truncate the expansion in (5) after quadratic 
terms. The coefficients α and β have dimensions of inverse slow-
ness and it will be convenient to express results below in terms 
of the dimensionless quantities α̃ = αs0 and β̃ = βs0, and like-
wise we will employ the dimensionless slownesses s̃1 = ŝ1/s0, and 
s̃2 = ŝ2/s0. For parabolic points, where one of the principal cur-
vatures is zero, the expansion (5) needs to be extended to higher 
order, as we show later.

For any given neighboring point on the slowness surface s =
s0 + ŝ, the associated group velocity is given by [34]

V = ∇kω(k) = ∇s S(s)

s · ∇s S(s)
, (6)
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