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Effect of the parallel electron current on Geodesic Acoustic Modes (GAM) in a tokamak is analyzed by
kinetic theory taking into the account the ion Landau damping and diamagnetic drifts. It is shown that
the electron current modeled by shifted Maxwell distribution may overcome the phase velocity threshold
and ion Landau damping thus resulting in the GAM instability when the parallel electron current velocity
is larger than the effective parallel GAM phase velocity Rqω. The instability occurs due to its cross term
of the current with the ion diamagnetic drift. Possible applications to tokamak experiments are discussed.
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1. Introduction

Geodesic Acoustic Modes (GAM) driven by geodesic plasma
compressibility in toroidal geometry [1] have actively been stud-
ied theoretically in recent years [1–8]. Oscillations in the geodesic
frequency range have been experimentally detected under wide
range of condition in various tokamaks, during ohmic, neutral
beam (NB), or ion cyclotron resonance heating (ICR) [7–16]. It
is expected that these modes will interact and affect station-
ary plasma rotation [18,19] as well as drift-wave turbulence and
plasma transport as has been observed in experiments [16] and
simulations [19]. In general, GAM eigen-modes are subdivided into
relatively high frequency geodesic mode (GAM) with frequency
ω2

GAM ≈ (7Ti/2 + 2Te)/R2
0mi and ion-sound mode ω2

s ≈ Te/q2 R2
0mi

[3–8,20] where R0 is major radius, q is safety parameter, Te,i elec-
tron and ion temperatures. The high frequency modes are often
observed as mixed with Alfvén eigenmodes (AE) (known as Alfvén
cascades or reversed shear modes, chirping AE, and beta induced
modes [7–11]). In T-10 tokamak experiments [14], the oscillations
exhibiting GAM features are observed across a substantial part of
the minor plasma radius, thus the local frequency of the GAM
ωGAM and the ion sound mode ωs may be close to each other at
some radial locations.
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It is well known that ion sound instability [21] may be driven
by an electric current along magnetic field. Typically, the instabil-
ity occurs only when the electron beam velocity is higher than
the ion sound velocity (v0 > cs) and the electron temperature is
much larger than the ion temperature (Te � 6Ti ). Typically, a high
electron current velocity may appear during current rump-up state
or/and during a counter NB injection in tokamaks [10,15,22].

Here, we investigate whether the parallel electron current can
drive the GAM modes via coupling with the drift dynamics. We
present the kinetic treatment of the GAM type modes by fully tak-
ing into account parallel electron and ion dynamics and the ion
diamagnetic drifts. Drift effect on GAM type modes was studied
before [2,3,7,8], but the electron current was not included. A gen-
eral kinetic treatment of geodesic eigenmodes is rather difficult,
but the procedure is simplified for the geodesic continuum (GC).
We do not consider here the eigen-mode structure, we consider
only the continuum modes, similarly to other papers [3,4,6,7,17].

2. Dispersion equation

We employ the quasi-toroidal set of coordinates (r, ϑ, ζ ) in
the large aspect ratio tokamak approximation [9] R0 � r, where
the circular surfaces (R = R0 + r cos ϑ , z = r sin ϑ ) are formed by
the magnetic field with toroidal and poloidal components, Bζ =
B0 R0/R , Bϑ = rBζ /qR0, and Bϑ � Bζ . The cylindrical coordinate
system is used in the velocity space, where {v⊥ , σ , v‖} are, respec-
tively, the perpendicular, angular, and parallel components with re-
spect of the magnetic field. The standard approach of small Larmor
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radius is assumed to obtain a drift kinetic equation [21,23] in the
form

∂ f

∂ϑ
− iΩ f

w
= eF

mw

[
(w − v0)E3

k0 v2
T

+ 2 + η(w2 + u2 − 3)

2k0 v T ωcdr
E2

− (2w2 + u2)

2v T ωck0 R
E1 sinϑ

]
. (1)

Here Ω = ω/k0 v T i and ωc = eB/mc are the normalized wave
and cyclotron frequencies, Ei are components of wave field where
the parallel field E3 is potential part of electromagnetic field,
E3 = hθ E2, hϑ = Bϑ/B0 is magnetic field inclination, k0 = hϑ/r
is the parallel wave vector, v T e,i = √

Te,i/me,i are thermal veloc-
ities, ∂n0/∂r = −n0/dr is density gradient, ηe,i = ∂ ln Te,i/∂ ln n0,
w = v‖/v T and u = v⊥/v T are normalized space velocities. For
the N = 0 toroidal mode number k0 = 1/qR . Maxwell distribu-
tion function F is assumed for ions and the electron distribution
is Maxwell distribution shifted by the parallel current velocity
V 0, Fe = F (1 + v‖V 0/v2

T e). We use the potential approximation for
the electric fields neglecting the magnetic perturbation. Integrating
Eq. (1) for electrons in the limit ω � v T e/qR (Ω � v T e/v T i in our
notation) and V 0/v T e = μv0 � 1, we obtain the equations for the
electron density perturbations ñe

ns = ein0 R0q

Te

×
[√

π

2
μ

(
v0 + teρ(1 − ηe/2)

)
Es −

(
1 + i

√
π

2
μΩ

)
Ec

]
,

nc = ein0 R0q

Te

×
[√

π

2
μ

(
v0 + teρ(1 − ηe/2)

)
Ec +

(
1 + i

√
π

2
μΩ

)
Es

]

(2)

where μ = v T i/v T e, E3 = Es sinϑ + Ec cosϑ , ñe = ns sin ϑ +nc cosϑ

and the contribution of small electron diamagnetic drift velocity
was combined with the contribution from the parallel current:
w0 = v0 + teρ(1 − ηe/2), where ρ = v T i/drωcihp is the normal-
ized drift parameter. Then, using the radial magnetic drift velocity,
we get the radial component of the electron current

j̃e
r = e

v3
T e

2

∞∫
0

u du

∮
dϑ

∞∫
−∞

Vre fe dw

= e2
i qn0

mωci

×
[

i

√
π

2

μ

2

(
w0 + te

ρ

2
(2 + ηe)

)
Es −

(
1 + iμ

√
π

2

Ω

2

)
Ec

]

(3)

where Vre,i = −(2w2 + u2)v2
T e,i sin ϑ/2Rωce,i , and te = Te/Ti . Us-

ing v0 = 0 in Eq. (1) for ions, we get the equations for the sin θ -
and cos θ -components of the perturbed distribution function

f s = ieiΩqR F Es

Ti(Ω
2 − w2)

(
w + ρ + ηρ

(w2 + u2 − 3)

2

)

− eiqR F Ec

Ti(Ω
2 − w2)

(
w2 + wρ + wρη

(w2 + u2 − 3)

2

)

− ieiΩq(2w2 + u2)F E1

2ωcimi v T i(Ω
2 − w2)

, (4a)

fc = eiqR w F Es

Ti(Ω
2 − w2)

(
w + ρ + ρη

(w2 + u2 − 3)

2

)

+ ieiΩqR F Ec

Ti(Ω
2 − w2)

(
w + ρ + ηρ

(w2 + u2 − 3)

2

)

− eiqw(2w2 + u2)F E1

2ωcimi v T i(Ω
2 − w2)

. (4b)

These expressions define the ion density perturbations as fol-
lows:

nic = −ein0 R0q

2mi v2
T i

×
[
(2 + √

2Ω Z)Es + i

(√
2

2

(
2 + Ω2η − η

)
Z + Ωη

)
ρEc

]
,

(5a)

nis = ein0 R0q

2mi0 v2
T i

{
iv T i

R0ωci
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2
(
Ω2 + 1
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(√
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)
ρEs
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. (5b)

Using the quasi-neutrality condition with the electron density
from Eq. (2), one finds the electric field components in the form

Es = i
{√2π iμw0 − 
√2(Ω2η + 2 − η)Z/2 + ηΩ�teρ}

2[1 + te(1 + √
2Ω Z/2) + √

2π iμΩ/2] Ec, (6a)

Ec = −i
te v T i[Ω + √

2(1 + Ω2)Z/2]
R0ωci D

×
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1 + te

(
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2Ω
Z

2
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√
2π

2
iμΩ

]
E1 (6b)

where

D = [
(
√

2Z/2 + 1)te + √
2π iμΩ/2 + 1

]2

− 1

4
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2
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Ω2 − 1
)
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(7)

The ion radial geodesic current is found from the ion distribu-
tion function in Eqs. (4a), (4b)

jri = e2
i n0q

4miωc

{
iρ

[√
2
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(
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]
Ec
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(
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)]
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}
. (8)

The final equation for the geodesic continuum, which is ob-
tained from the quasi-neutrality condition j̃e

r + j̃i
r + jp = 0, where

jp is the ion radial polarization current jp = −iωc2 E1/4πc2
A , c A =

B/
√

4πnimi has the form

Ω2/q2 = Ψ/D (9)

where Ψ is given by the expression

Ψ = −D
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