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In the present paper, we consider only the ideal elastic behavior, neglecting the dissipation associated
with the atomic rearrangements. Under these conditions, the decagonal quasicrystal plate bending
problems have been discussed. The Stroh-like formalism for the bending theory of decagonal quasicrystal
plate is developed. The analytical solutions for problems of decagonal quasicrystal plate with elliptic
hole subjected to out-of-plane bending moments are obtained directly by using the forms. The resultant
bending moments around the hole boundaries are also given explicitly. When the phonon–phason
coupling is absent, the results reduce to the corresponding solutions for the isotropic elastic plates.
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1. Introduction

After the first discovery of a quasicrystalline phase (icosahe-
dral structure) by Shechtman in 1984 [1], much research was per-
formed on the electronic structure and the optic, magnetic, ther-
mal and mechanical properties of quasicrystals [2]. Elasticity is one
of the important properties of quasicrystals. The elastic behavior
of quasicrystals is different from that of usual crystals. Based on
Landau–Anderson symmetry-breaking, the phason as a new ele-
mentary excitation was introduced in addition to the well known
phonon. Phonons are responsible for translations of particles while
phasons are responsible for rearrangements of local atomic config-
urations [3–5].

The problems of quasicrystals containing holes and cracks have
been studied extensively for two-dimensional deformations [6,7].
Many methods and techniques have been developed to solve prob-
lems of elasticity and defects in quasicrystals. Among them, the
decomposition procedure, the Green function method and integral
transformations have been particularly successful [8–11]. However,
relatively little work involving the bending problems of quasicrys-
tals has been done due to the mathematical complexity. Bound-
ary conditions for plate bending in one-dimensional hexagonal
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quasicrystals and two-dimensional dodecagonal quasi-crystal have
been considered by Gao et al. [12,13].

Recently, the complex variable methods in quasicrystal elastic-
ity have reached a big step by connecting Muskhelishvili method,
Lekhnitskii formulation and Stroh formalism [14–16]. However,
still very few contributions have been made to the plate bending
problems. The Stroh formalism is an elegant and powerful tool for
the study of two-dimensional deformation of quasicrystal materi-
als, which has been applied successfully to solve the elliptical hole,
the rigid-line inclusion problems and the interaction between de-
fects [17]. Under the conditions (as already mentioned), Stroh-like
formalism for the bending theory of quasicrystal plates is devel-
oped in this paper. In our formalism, the deflections, the moments
and the transverse shear forces can all be expressed in complex
matrix form. Based on the developed formalism, the analytical so-
lutions for decagonal plates with elliptic hole subjected to out-of-
plane bending moments are now obtained explicitly. The solutions
for the crack problems are obtained by letting the minor axis of
the ellipse approach to zero and the moment intensity factors of
the cracks are also given. Furthermore, a numerical example is
given for the reader to make a quantitative assessment.

2. Stroh-like formalism for the bending theory of decagonal
quasicrystal plate

The drawbacks in standard format of quasicrystal linear elastic-
ity have been discussed in Refs. [18–20]. In principle, a conservative
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component of the inner self-action may exist, which make analysis
more difficult. Following the point of view adopted in [21], here
we adopt generalized elastic constitutive prescriptions [5] and the
common assumption is accepted. The restriction of the analysis to
the linear elastic case suggests to attribute an ideal limit character
to the present results [21].

Assume that decagonal quasicrystal is periodic in z direction,
and quasi-periodic in the x–y plane. According to the elastic theory
of quasicrystals [5,6], we have the strain-displacement relations

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, wij = ∂ wi

∂x j
(1)

the equilibrium equations

∂σi j

∂x j
= 0,

∂ Hij

∂x j
= 0 (2)

and the constitutive equations

σxx = C11εxx + C12εyy + R(wxx + w yy)

σyy = C12εxx + C11εyy − R(wxx + w yy)

σzz = C13εxx + C13εyy + C33εzz

σxy = σyx = 2C66εxy + R(w yx − wxy)

σyz = σzy = 2C44εyz

σxz = σzx = 2C44εxz

Hxx = K1 wxx + K2 w yy + R(εxx − εyy)

H yy = K1 w yy + K2 wxx + R(εxx − εyy)

Hxy = K1 wxy − K2 w yx − 2Rεxy

H yx = K1 w yx − K2 wxy + 2Rεxy

Hxz = K3 wxz

H yz = K3 w yz (3)

in which C66 = (C11 − C12)/2. σi j (σi j = σ ji ), εi j (εi j = ε ji ), ui
and Cij are the stress, strain, displacement, and elastic constants
of phonon fields, respectively. Hij (Hij �= H ji ), wij (wij �= w ji ), wi
and Ki are the stress, strain, displacement, and elastic constants of
phason fields. R is the phonon–phason coupling elastic constant.

The approximate theory of bending of decagonal quasicrystal
plates (thin plates) is based on the Kirchhoff plate assumptions. It
follows from the assumption that

ux = −z
∂ w

∂x
, u y = −z

∂ w

∂ y

wx = −z
∂u

∂x
, w y = −z

∂v

∂ y
(4)

where w(x, y) is the deflection of the middle plane, u(x, y) and
v(x, y) are the generalized deflection of the middle plane. By
Eqs. (1) and (4), we have

εxx = −z
∂2 w

∂x2
, εyy = −z

∂2 w

∂ y2
, εxy = −z

∂2 w

∂x∂ y
(5)

wxx = −z
∂2u

∂x2
, w yy = −z

∂2 v

∂ y2

wxy = −z
∂2u

∂x∂ y
, w yx = −z

∂2 v

∂x∂ y
(6)

When we cut this plate with certain surfaces parallel to the initial
middle surface xy with height equal to the plate thickness h, then
the bending moments Mxx , M yy and Mxy , the generalized bending
moments Nxx , Nxy , Nxy and N yx can be expressed as follows

Mxx =
h
2∫

− h
2

σxxz dz, M yy =
h
2∫

− h
2

σyy z dz

Mxy = M yx =
h
2∫

− h
2

σxy z dz (7)

Nxx =
h
2∫

− h
2

Hxxz dz, N yy =
h
2∫

− h
2

H yy z dz

Nxy =
h
2∫

− h
2

Hxy z dz, N yx =
h
2∫

− h
2

H yxz dz (8)

Substituting Eqs. (5) and (6) into Eqs. (3) then into Eqs. (7)–(8),
the bending moments and the generalized bending moments can
be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(9)

in which the matrix D (see Appendix A) is bending stiffness ma-
trix.

We consider now the case when the plate is subjected to bend-
ing only by forces and moments distributed along the edge. The
force and moment equilibrium equations of the plate can be ex-
pressed as

∂ Q x

∂x
+ ∂ Q y

∂ y
= 0,

∂Mxx

∂x
+ ∂Mxy

∂ y
− Q x = 0

∂M yx

∂x
+ ∂M yy

∂ y
− Q y = 0 (10)

∂Nxx

∂x
+ ∂Nxy

∂ y
= 0,

∂N yx

∂x
+ ∂N yy

∂ y
= 0 (11)

in which Q x and Q y are the transverse shear forces defined by

Q x =
h
2∫

− h
2

σxz dz, Q y =
h
2∫

− h
2

σyz dz

The equilibrium equations (10) and (11) can be satisfied automat-
ically if we introduce stress functions ψ1(x, y), ψ2(x, y), φ1(x, y)

and φ2(x, y) such that

Mxx = −∂ψ1

∂ y
, M yy = ∂ψ2

∂x
, Mxy = 1

2

(
∂ψ1

∂x
− ∂ψ2

∂ y

)

Nxx = −∂φ1

∂ y
, N yy = ∂φ2

∂x

Nxy = ∂φ1

∂x
, N yx = −∂φ2

∂ y
(12)
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