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Nowadays, the emergence of online services provides various multi-relation information to support
the comprehensive understanding of the epidemic spreading process. In this Letter, we consider the
edge weights to represent such multi-role relations. In addition, we perform detailed analysis of two
representative metrics, outbreak threshold and epidemic prevalence, on SIS and SIR models. Both
theoretical and simulation results find good agreements with each other. Furthermore, experiments show
that, on fully mixed networks, the weight distribution on edges would not affect the epidemic results
once the average weight of whole network is fixed. This work may shed some light on the in-depth
understanding of epidemic spreading on multi-relation and weighted networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Epidemic spreading based on complex networks, where nodes
represent individuals and links denote their interactions, has at-
tracted an increasing attention in recent years [1–3]. Generally,
disease propagation can be modeled as a kind of dynamic pro-
cess in which an item is transmitted from an infected individual to
a susceptible individual via the link between them [4]. Motivated
by previous pioneering works that many real networks exhibit
the small-world phenomenon and scale-free property, more and
more results of spreading dynamics on those networks are pre-
sented recently [5,6]. The spreading process on the scale-free net-
work indicates that a highly heterogeneous structure would lead
to both the absence of the epidemic threshold [7,8] and the hier-
archical spreading of epidemic outbreak [9]. Further study of the
susceptible-infected-susceptible (SIS) model on the scale-free net-
work shows that the vanishing of epidemic threshold stems from
the node with the largest degree rather than the scale-free na-
ture [10]. More general, the epidemic threshold for SIS model on
an arbitrary undirected graph is determined by the largest eigen-
value of the adjacency matrix [11,12]. On the small-world network,
most infection occurs locally because of the high-level cluster and
the disease spreads rapidly into large regions of the population for
the short path lengths [13,14]. Analysis of the susceptible-infected-
recovered model (SIR) on small-world networks presents that a
phase transition between two different regimes occurs at a partic-
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ular rewiring parameter pc [15], and such critical transition is also
found in the spreading on dynamical small-world networks [16]. In
addition, the epidemic propagation on the real-network structure
also draws much attention, such as sexually transmitted disease
on the sexual contact networks [17], mobile phone viruses on the
multimedia messaging systems [18], disease transmission between
human beings and mosquitos [19], and so on.

However, the aforementioned researches mostly consider the
simplest case of networks with only one type of links. In fact,
there exist various real-world complex networks, which are char-
acterized by inherent multi-relation connections [20–22], such as
blood relationship, romantic relationship, friend relationship, work
relationship in the social contact network. The role of hybrid rela-
tions in the spreading process could be very different [23]. Some
disease propagation would be more likely to be promoted among
family members such as the HIV, while some contagions such as
H7N9 [24] are prone to transmit among the staffs in the slaugh-
ter house or chicken farm. It is obvious that with the existence
of the multiple relationship, the network structure becomes more
complex and diverse, leading to more special spreading dynam-
ics. Failure cascading of the network coupled with connectivity
links and dependency links [25–27] demonstrates that the net-
work disintegrates in a form of a first-order phase transition for
a high density of dependency links, whereas the network disinte-
grates in a second-order transition for a low density of dependency
links. Though multi-relation networks attract more and more at-
tention, it is still unclear how the multi-relationship affects the
epidemic spreading dynamic for the complex network structure. It
is a reasonable way to treat the multi-relation network with as-
signing different weights for each relation. Li et al. [28] proposed
a binary-relation network model, representing colleague and friend
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Fig. 1. (Color online.) Illustration of (a) multi-relation network where each type of
line corresponds to one kind of relation; and (b) the corresponding weighted net-
work, where the thickness of link represents the size of weight.

relationship by setting different weights of the corresponding links,
and the epidemic spreading process demonstrates that the out-
break threshold is suppressed by the closer relationship.

In order to understand the epidemic spreading process on
multi-relation networks in-depth, in this Letter, we construct
multi-relation networks with considering various relation-levels
as different weights, where link weight follows some given dis-
tributions (see Fig. 1). Then, we perform SIS and SIR models
on the proposed weighted networks, where the links with the
same weight shows the same transmit capacity. Focusing on the
outbreak threshold and epidemic prevalence, theoretical analysis
based on the mean-field approximation illustrates that multiple re-
lations would result in the decrease of the outbreak threshold and
brings more infections in the final state. Detailed analysis indicates
that the epidemic spreading result just depends on the average
level of relationship rather than the link weight distribution. In
addition, Monte Carlo simulation agrees well with the theoretical
results.

2. Model

In this Letter, we consider that there are n kinds of relations
in the network where the multiple relations can be represented as
the link weight. Fig. 1 shows such a illustration of a multi-relation
network and its corresponding weighted network. In general, we
set the links with discrete weights as w = 1,2, . . . ,n to identify
each type of relationship, and the link with higher weight means
closer relationship, through which disease is more likely to trans-
mit. In order to illustrate the spreading effects of different rela-
tions, we investigate two sets of weight distributions, one of which
follows uniform distribution, the other follows the Poisson distri-
bution. In addition, we assume that all links are fully mixed and
the same type of links are distributed uniformly in the network.

Consequently, we adopt SIS and SIR models on the small-world
network (WS network with randomness probability ps = 0.3) [29]
and scale-free network (BA network) [30], respectively, where the
network size is set to be N = 104, and the average degree is
〈k〉 = 8. In general, we set the recovery probability μ = 1, ini-
tial infected density I0 = 0.01 and define the transmit probability

for links with w = 1 as λ. We assume that transmit probability
through the edge with weight w (λw ) is equivalent to the infected
probability that w infected individuals (I) simultaneously influence
the susceptible individual (S) [31], which can be obtained by:

λw = 1 − (1 − λ)w . (1)

According to the mean-field approximation, for an arbitrary
edge the successful transmission probability in one timestep is:

β =
∑

w

pw
(
1 − (1 − λ)w)

, (2)

where pw is the proportion of links with weight w .
In general, λ is very small, thus Eq. (2) can be simplified to:

β ≈ αλ, (3)

where α is the average weight of all links in the network.

3. Outbreak threshold

In order to understand the epidemic outbreak threshold with
the multi-relation effect, we use a method of percolation theory,
for disease spreading can be seen as a growing percolation process
[32]. For the case of uncorrelated networks, the probability that
an edge links to a node with degree k is kp(k)

〈k〉 , where p(k) is the
degree distribution of the observed network, and 〈k〉 is the average
degree. In addition, we assume that as long as the epidemic has
not spread out yet, the infected node with degree k has only one
ingoing link and k−1 outgoing links [32]. And the average number
of susceptible nodes infected by an already infected node i is:

〈ni〉 = β
∑

k

p(k)k(k − 1)

〈k〉 + π, (4)

where π is the contribution of the probability to reinfect the an-
cestor (the node that infected node i, corresponding to i’s ingoing
link) [33].

For the SIR model where the reinfection is forbidden, the dis-
ease spreads directionally down a tree structure and π = 0. If an
infected individual infects at least one other individual on aver-
age, the epidemic can reach an endemic state. Therefore, we have
〈ni〉 = 1 at the epidemic threshold [32,33], leading to:

λc(SIR) = 〈k〉
α(〈k2〉 − 〈k〉) . (5)

For the SIS model where the reinfection is allowed, things get
more complicated. We define πt as the probability that j infects
i if i has infected j yet. In this model, we set the recovery prob-
ability μ = 1, which means that the infected node remains the
infected state in just one step. Therefore, the interval that j re-
mains infected and i remains susceptible is only 1, which leads to
πt = β . Incorporating the effect of competition between j and the
other descendants of i, the reinfected probability π for the system
can be calculated as following [32]:

π = πt

κ−1∑
k′=0

(
κ − 1

k′

)
(βπt)

k′
(1 − βπt)

κ−1−k′

k′ + 1
, (6)

where κ − 1 = ∑
k

p(k)k(k−1)
〈k〉 is the branching factor that represents

the average number of nodes influenced by node i and k′ repre-
sents the infected neighbors of node i.

Neglect the high-order term, we can obtain that π ≈ β . Accord-
ing to Eq. (4), the epidemic threshold of SIS model is:

λc(SIS) = 〈k〉
α〈k2〉 . (7)
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