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We study the existence of local analytic first integrals of a class of analytic differential systems in the
plane, obtained from the Chua’s system studied in L.O. Chua (1992, 1995), N.V. Kuznetsov et al. (2011),
G.A. Leonov et al. (2012) [6,7,11,13]. The method used can be applied to other analytic differential
systems.
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1. Introduction and statement of results

The nonlinear ordinary differential equations appear in many
branches of applied mathematics, physics and, in general, in ap-
plied sciences. For a differential system defined on the plane R

2

the existence of a first integral determines completely its phase
portrait. Since for such vector fields the notion of integrability is
based on the existence of a first integral the following natural
question arises: Given a differential system in R

2 , how to recognize if
this system has a first integral?

The easiest planar differential systems having a first integral
are the Hamiltonian ones. The integrable planar differential sys-
tems which are not Hamiltonian are, in general, very difficult to
detect. Many different methods have been used for studying the
existence of first integrals for non-Hamiltonian differential systems
based on: Noether symmetries [4], the Darbouxian theory of in-
tegrability [8], the Lie symmetries [16], the Painlevé analysis [3],
the use of Lax pairs [12], the direct method [9] and [10], the linear
compatibility analysis method [18], the Carlemann embedding pro-
cedure [5] and [2], the quasimonomial formalism [3], the Ziglin’s
method [19], the Morales–Ramis theory [15], etc.

The main objective of this Letter is to show how to study the
existence or non-existence of analytic first integrals of planar an-
alytic differential systems, when the standard theorems providing
sufficient conditions for the non-existence do not work.

We consider analytic differential systems

ẋ = f (x, y), ẏ = g(x, y), (1)
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defined in an open subset U of R2. We say that a non-constant an-
alytic function H : U → R

2 is an analytic first integral of system (1)
in U if H is constant on the solution curves of system (1), or equiv-
alently

f (x, y)Hx + g(x, y)H y = 0,

in U . Of course, Hx denotes the derivative of H with respect to x.
There exist well-known results providing sufficient conditions

for the non-existence of local analytic first integrals of system (1),
as for instance the following two theorems.

Theorem 1. (See Poincaré [17].) Assume that the eigenvalues λ1 �= 0 and
λ2 �= 0 at some singular point p of the analytic differential system (1) do
not satisfy any resonance condition of the form

λ1k1 + λ2k2 = 0,

for any positive integers k1 and k2 . Then system (1) has no analytic first
integrals defined in a neighborhood of p.

Theorem 2. (See Li et al. [14].) Assume that the eigenvalues λ1 and λ2
at some singular point p of the analytic differential system (1) satisfy
that λ1 = 0 and λ2 �= 0. Then system (1) has no analytic first integrals
in a neighborhood of p if p is isolated in the set of all singular points of
system (1).

The problem for studying the non-existence of local analytic
first integrals of system (1) in a neighborhood of a singular point
appears when the sufficient conditions of Theorems 1 and 2 cannot
be applied. In this work we deal with such a case. More precisely,
we will study the local analytic integrability of the analytic differ-
ential system
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ẋ = y + m(tanh x − x),

ẏ = −(α + 1)y − αm(tanh x − x), (2)

in a neighborhood of its unique singular point, the origin. Here α
and m are real parameters. Our main result is the following.

Theorem 3. The analytic differential system (2) has a local analytic first
integral in a neighborhood of the origin if and only if m = 0. When
m = 0, a first integral is (α + 1)x + y.

Theorem 3 is proved in Section 2.
In fact Theorem 2 can be partially applied to the differential

system (2), because at the singular point located at the origin of
coordinates the eigenvalues are 0 and −1 − α. Therefore, when
α �= −1 and m �= 0 (otherwise the origin is not isolated in the
set of all singular points) Theorem 2 says that the differential sys-
tem (2) has no local analytic first integral in a neighborhood of the
origin. So, using Theorem 2, in order to complete the proof of The-
orem 3 we need to show it when α = −1. But since the proof of
Theorem 3 for the case α = −1 needs essentially the same com-
putations that the proof of Theorem 3 for any value of α, we shall
prove Theorem 3 in this last case.

The differential analytic system (2) comes from the Chua’s sys-
tem

Ẋ = α(Y − X) − α
(
m1 X + (m0 − m1) tanh X

)
,

Ẏ = X − Y + Z ,

Ż = −(βY + γ Z),

studied in [6,7,11,13], by doing the linear change of variables

x = X, y = α(Y − X), z = 0,

and by defining m = αm1, when m0 = β = γ = 0. In fact, in Chua’s
original system (see [6,7]) he works with a function which has a
qualitative behavior as the function tanh x, but in the related pa-
pers [11,13] the authors already work with the function tanh x.

2. Proof of Theorem 3

If m = 0, it is easy to check that (α + 1)x + y is an analytic first
integral of system (2).

The main idea of the proof is to assume that there exists a
local analytical first integral H in a neighborhood of the origin of
system (2) when m �= 0. Then writing it in power series of the
variables x and y, and forcing that it is a first integral we obtain a
finite system of equations for each degree of the monomials. The
unknowns of these infinitely many systems are the coefficients of
the power series of H . Using induction we will show that all these
coefficients vanish, and consequently such a first integral does not
exist.

Assume m �= 0 and suppose H is a local analytic first integral of
system (2) in a neighborhood of the origin. Then we can write H
as a Taylor series

H(x, y) =
∞∑

i, j=0

ai, jx
i y j,

where a0,0 = 0. We also expand the hyperbolic tangent in its Taylor
series as

tanh x = x − x3

3
+ 2x5

15
− 17x7

315
+ · · ·

=
∞∑

i=1

B2i4i(4i − 1)

(2i)! x2i−1 =
∞∑

i=1

bix
2i−1,

where the Bi are the Bernoulli numbers, see for instance [1].
We note that the numbers bi �= 0 for i � 1. Then, clearly

tanh x − x =
∞∑

i=2

bix
2i−1.

By definition H must satisfy the equation(
y + m(tanh x − x)

)
Hx + (−(1 + α)y − αm(tanh x − x)

)
H y = 0,

which can be rewritten as

G = m(tanh x − x)(Hx − αH y) + y
(

Hx − (1 + α)H y
) = 0, (3)

for all (x, y).
Using Eq. (3) we will prove by induction that

ai,n−i = 0 for all n � 1 and i = 1,2, . . . ,n, (4)

which means that all the ai, j are zero, hence H is zero. We shall
first compute the left-hand side of Eq. (3). We have

Hx =
∞∑

i=1, j=0

iai, jx
i−1 y j =

∞∑
i, j=0

(i + 1)ai+1, jx
i y j,

H y =
∞∑

i=0, j=1

jai, jx
i y j−1 =

∞∑
i, j=0

( j + 1)ai, j+1xi y j,

Hx − αH y =
∞∑

i, j=0

(
(i + 1)ai+1, j − α( j + 1)ai, j+1

)
xi y j

=
∞∑

i, j=0

ci, jx
i y j, (5)

Hx − (α + 1)H y =
∞∑

i, j=0

(
(i + 1)ai+1, j

− (α + 1)( j + 1)ai, j+1
)
xi y j .

Then

(tanh x − x)(Hx − αH y)

=
∞∑
j=0

(
b2c0, jx

3 + b2c1, jx
4 + (b2c2, j + b3c0, j)x5

+ (b2c3, j + b3c1, j)x6 + · · ·)y j

=
∞∑

i=3, j=0

(�i/2�∑
k=2

bkci−2k+1, j

)
xi y j, (6)

where �x� denotes the ceiling function, which gives the smallest
integer greater than x. We also have

y
(

Hx − (α + 1)H y
)

=
∞∑

i, j=0

(
(i + 1)ai+1, j − (α + 1)( j + 1)ai, j+1

)
xi y j+1

=
∞∑

i=0, j=1

(
(i + 1)ai+1, j−1 − (α + 1) jai, j

)
xi y j. (7)

Using equalities (6) and (7), Eq. (3) becomes

G =
∞∑

i=0, j=1

(
(i + 1)ai+1, j−1 − (α + 1) jai, j

)
xi y j

+ m
∞∑

i=3, j=0

(�i/2�∑
k=2

bkci−2k+1, j

)
xi y j = 0.
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