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We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices,
subject to edgewise competition. Each network may grow new edges spontaneously or through triad
closure. Both networks inhibit the other’s growth and encourage the other’s demise. These nonlinear
stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic
system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a

reduced parameter space. This situation models competitive communication networks such as BlackBerry
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Messenger displacing SMS; or instant messaging displacing emails.
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1. Introduction

In this Letter we consider an extension of modelling nonlinear
evolving edge networks introduced in [8], specifically by introduc-
ing a competing aspect to multiple networks’ dynamics. For sim-
plicity we shall consider two different types of edges, henceforth
referred to as Red and Blue edges, acting upon the same group of
nodes, where each edge type has its own discrete time dynamics,
and series of adjacency matrices detailing its evolution. Since these
edge types act upon the same group of nodes, they may be super-
imposed onto a single graph, providing the different edge types are
clearly differentiated. The work presented in this Letter considers
such a network where the different edge types are competing with
one another, that is they negatively impact each other’s growth.
The specifics of our chosen model are outlined in Section 2.

Whilst the extension of tradition network theory from a
stochastic to a dynamic setting has recently earned much atten-
tion [1,3,4,11,9,12,13], the notion of competing networks remains
largely unexplored. Competing networks can however be observed
in many technological fields, for example one might consider a
group of BlackBerry owners: the networks of BlackBerry Messen-
ger usage and SMS texting amongst this group are seen to be
competing with one another due to their similar functions. Here
we see the BlackBerry Messenger network partially displaces the
SMS network as users switch their method of communication,
leading to a fall in SMS usage [2]. It should also be noted that
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this competition is not driven by financial motives, instead users
are choosing to switch due to mutual convenience. Public and so-
cial communication poses challenges to both commercial interests
(mass customer industries such as telecommunications, retail, con-
sumer goods, marketing, advertising and new media) and public
interests (security, defence policy and opinion formation). Accord-
ingly it is very timely to consider how one type of communication
platform may displace another.

Such competing technologies are typically emergent, with one
network, Red, boasting superior features (and hence its edge den-
sity will grow more rapidly) whereas the other, Blue, possessing
a higher userbase (and hence has a higher initial edge density).
We are interested in the equilibrium positions obtained by both
networks (henceforth referred to as the system), and in Section 3
we introduce a mean field approximation of our system, to aid in
locating these equilibria. We conclude that it is unlikely both net-
works would reach a high equilibrium position, since that would
imply individual’s node-node relations use both methods of com-
munication, and instead argue that each other’s presence neg-
atively impacts each network. Section 4 shows that this causes
either one network to be eliminated or both networks find a com-
promise at low edge density values, and we examine all possible
equilibrium positions for the system, together with conditions for
their existence.

Finally, in Section 5, we make observations concerning the sys-
tem’s equilibria in the case of highly asymmetric competition.

2. Competing edge dynamics

First we introduce some terminology to define our competing
evolving networks.
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Following [8,7,10] we define an evolving network, over discrete
time steps indexed by k=1,2,..., via a sequence of adjacency
matrices, say {Ay}. We shall assume that all edges are undirected
and we do not allow any edges connecting a vertex with itself.
Thus all of our adjacency matrices lie in the set S, of binary, sym-
metric, n x n matrices having zeros along their main diagonals. We
assume the evolving network dynamic is first order in time: at the
(k + 1)th time step each edge in A1 will have a birth or death
rate that is conditional on A,. However no new vertices will enter,
nor shall any existing vertices be permanently removed from the
evolving network. At each time step the evolving network is thus a
random network conditional on the evolving network at the previ-
ous time step, with a probability distribution P(Aj,1|Ak), defined
as Ay4q ranges over Sp.

We shall assume that presence of each edge in Ay;q is de-
termined independently of all other edges. This means that it is
sufficient to specify the conditional expectation that each edge is
present, given by

(Arr1lA) = D A1 P(Arga A,

Ak+1€5n

rather than dealing with full probability distribution. In fact for
such edge-independent conditional random networks we may
write

P(Ak+11Ak)
=TT A0~ G A)y)

i<j
demonstrating their equivalence.

Notice that since distinct edges may be conditionally dependent
on some of the same information, it is possible for their appear-
ance to be highly correlated over time, despite their independence.

Let the sequence {Ay} within S, denote a Red evolving network
defined over a set of n vertices. Similarly let the sequence {Bj}
within S, denote a Blue evolving network defined over the same
set of n vertices. Then, extending the above ideas, we will assume
that both evolving networks have a first order edge-independent
dynamic such that each network at each time step is a random
network conditionally dependent upon both networks at the pre-
vious time step. Then such a competitive dynamic is completely
determined by matrix equations of the form

(Aks1|Ak, Br) = Ar o (1 — 2a(Ak, By))

+ (1 — Ag) o Aa(Ak, Bi),
(Bi+1lAk, Bk) = Bi o (1 — 225 (A, By))

+ (1 — Ag) o Ap(Ag, Bi).

Here 1 denotes the adjacency matrix for the n-vertex clique
(all ones except for the main diagonal); o denotes the element-
wise (Hadamard) matrix product; Aa(Ag, By) and Ap(Ag, By) de-
note matrices of conditional edge birth probabilities (P (edge;; €
Ar+1ledge;; ¢ Ay) € [0,1]); and 24(Ak, Bk) and $2p(Ag, By) de-
note matrices of conditional edge death probabilities (P(edge;; ¢
Ar+1ledge;j € Ap) €10, 1]).

Now let us be more specific. We define our networks’ individual
edge birth rates to be based upon a triangulation mechanism [8]
(where friends of friends are more likely to become friends, called
triadic closure [5]),% and also containing some antagonistic terms.
We shall increase the probability of an existing Red edge dying if

2 These are networks that strive to achieve triadic closure where the edge dynam-
ics between two vertices depends, amongst other values, on their current number
of neighbours in common.
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Fig. 1. Three separate simulations of competing networks, modelled according to
(1) and (2). In each case the edge densities of the competing networks are plotted
against one another at each timestep. Notice that each simulation is performed with
the same network parameter values and initial matrix pair, however evolve towards
distinct network positions.

a Blue edge is also present between those two vertices, and vice
versa. We shall also decrease the probability of a Red edge being
born if a Blue edge is already present between those two vertices,
and vice versa. Thus we consider

(Ak+11Ak: Br) = Ag o (1(1 — wa) — ;LaBi)

+ (1= Ap) o (84 +€aAr® — yaBy), (1)
(Bk41|Ak: Br) = B o (1(1 — wp) — s Ay)
+ (1= By) o (85 + €5B? — yBAk), (2)

where wa, wp, 84,88, €4, €B, LA, LB, Y4 and yp are all real con-
stants in (0, 1).

Notice that since both Ay;q and By, are dependent upon Ay
and By, there is therefore no ‘first/late mover advantage’ [6] for the
Red or Blue network.

Fig. 1 shows the evolution of various synthetic networks in
terms of the edge density for the Red and Blue networks, where
each simulation starts from the same initial pair of matrices, Ay
and Bj. Their evolution is modelled according to (1) and (2), with
n =139, and the same parameter values for both Red and Blue net-
works: w =1/25, e =1/110, u =1/17, § =1/600 and y = 1/600.
Notice that multiple apparently stable equilibria exist and that they
are reachable from the same initial network pair at the first time
step. This highlights the significance of identifying these equilibria
for a given network, and motivates the analysis in the next section.

3. Mean field approximation

In order to identify and analyse the long term equilibria, we
take the mean field approximation introduced in [8]. Symmetry of
the dynamics implies there are no preferred vertices or edges (all
edges satisfy the same rules since the birth and death rates have
no explicit edge dependencies), so we assume that we may write
(Ak) ~ px1 and similarly (By) ~ qx1 where p, and g, represent
the edge densities of the Red and Blue networks at the kth time
step; and hence that these networks are approximated by Erdos—
Renyi random graphs. Then the mean field approximation for the
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