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We present a complete derivation of the exact evolution of quantum mechanics for the case when the
underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We
show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated
by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan
geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and
the time-dependent linear potential are worked out as illustrations.
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1. Introduction

Quantum geometric phase have been attracting significant re-
search interest in the recent 30 years. Berry [1] showed that, an
eigenstate of parameter-dependent Hamiltonian H( �X(t)) varying
adiabatically and cyclically acquires, besides the well-known dy-
namical phase e−ih̄−1 ∫

En(t)dt , a geometrical phase

γ G
n (C) =

∮
C

〈
ψn( �X)

∣∣ih̄−→∇ �X
∣∣ψn( �X)

〉
d �X, (1)

which depends essentially on the closed path C that has been fol-
lowed in the parameters space. As explained by Simon [2], the
geometrical transport, along C , that brings an initial eigenstate to
the evolved state, can be derived from the natural connection of
the line bundle. Later, the geometric phase was, generalized to the
cases of degenerate energy eigenstates by Wilczek and Zee [3].

Removing the adiabatic hypothesis, Aharonov and Anandan [4]
have reformulated and generalized Berry’s result and shown that
such a geometrical phase may appear for any state which is cyclic
with respect to some evolution. They defined their non-adiabatic
geometrical phase for the cyclic evolution in the projective Hilbert
space by removing the dynamical part, identified as the integral of
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the expectation value of the Hamiltonian h̄−1 ∫ T
0 〈Ψ (t)|H(t)|Ψ (t)〉,

from the total phase ϕ . They showed that the geometrical phase
can be written in the form

βG =
T∫

0

〈
ψ̃(t)

∣∣i d

dt

∣∣ψ̃(t)
〉
dt, (2)

where |ψ̃(t)〉 = e−i f (t)|Ψ (t)〉 with f (T ) − f (0) = ϕ such that
|ψ̃(T )〉 = |ψ̃(0)〉. The cyclic states can be obtained as eigenstates
of a periodic invariant operator I(T ) = I(0) introduced by Lewis
and Riesenfeld [5]. In general, even for non-adiabatic, non-unitary
and non-cyclic evolutions, a reparametrization invariant phase can
be defined which is associated with a curve in the ray space [6,7].

In their classical paper on dynamical invariant I(t), Lewis and
Riesenfeld [5] are very close to discover the geometric phase.
They showed that for a quantal system characterized by a time-
dependent Hamiltonian H(t) and a Hermitian invariant operator
I(t), the eigenstate |φn(t)〉 of I(t) develops a global phase given by

h̄θn(t) =
t∫

0

〈
φn

(
t′)∣∣[ih̄

∂

∂t′ − H

]∣∣φn
(
t′)〉dt′, (3)

where

h̄θ
g
n (t) =

t∫
0

〈
φn

(
t′)∣∣ih̄ ∂

∂t′
∣∣φn

(
t′)〉dt′, (4)
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has been interpreted as a non-adiabatic geometrical phase af-
ter Berry’s phase discovery. The correspondence of Berry’s phase
and Lewis–Riesenfeld phase has been pointed out by Morales [8]
for the case of quadratic Hamiltonians. Notice that Berry’s analy-
sis corresponds to the case where H(0) = I(0) (and an adiabatic
evolution) and the one of Aharonov–Anandan to the case I(0) =
|ψ̃(0)〉〈ψ̃(0)| (and a cyclic evolution).

Most of the works on both geometrical phase and the invariant
theory are confined to discrete spectra. In the case of continuous
spectra, such as in the scattering theory, Newton [9] within non-
interaction picture method revealed that its geometric phase factor
is connected to the S matrix. In order to reinterpret the usual scat-
tering phase shift as an adiabatic phase in the spirit of the original
investigation of Berry, Ghosh [10] extended the adiabatic approxi-
mation to the continuous spectra like an ansatz and confined the
derivation to a one-dimensional scattering problem with negligible
reflection.

Using the Weyl eigendifferentials [12,13]

∣∣δφk(t)
〉 =

k+δk∫
k

∣∣φk′(t)
〉
dk′ (5)

which in some sense “technically discretizes” the continuous spec-
trum and lays the basis for transferring all the concepts known for
discrete spectra to the continuous case, Maamache and Saadi [11]
have proved the adiabatic theorem for Hamiltonian systems with
continuous spectra and addressed the corresponding generalization
of the concept of the adiabatic Berry’s phase to the continuous
case

γ G
k (t) =

t∫
0

〈
δψk

(
t′)∣∣ih̄ ∂

∂t′
∣∣ψk

(
t′)〉dt′ (6)

(|ψk(t)〉 is an eigenstate of the instantaneous Hamiltonian) and
showed that the generalized geometrical phase is the diagonal
element of the S matrix, yielding a consistent picture. Very re-
cently, Liu and Yi [14] explored the geometric phase in the scat-
tering process by taking only the transmission process into ac-
count.

Important questions motivate our work: How could one treat
the time-dependent quantum problems for a continuous spectrum
and investigate the possibility of finding geometric phases related
to the invariant operator theory? Should the S matrix conserve its
geometric aspect without recourse to adiabaticity (i.e. in a cyclic
evolution)? The key idea in this Letter is the use of the Weyl eigen-
differentials in order to present a theoretical proof of the exact
quantum evolution for systems whose Hamiltonians and their in-
variants have a completely continuous spectrum supposed to be
non-degenerated. The expression for the obtained total phase is
expressed in terms of the eigenvectors of the invariant operator.
Once the generalization of the invariants theory is established, we
show, based on the cyclicity of the scattering problems, that the
geometric aspect of the S matrix is independent of the nature of
the time evolution of the system.

2. Exact evolution for continuous spectrum

2.1. Review of the discrete spectrum case

Let us recall that the general method to introduce the Lewis and
Riesenfeld theory, valid whatever the time dependence of the pa-
rameters, considers invariant operators. For a system specified by a
time-dependent Hamiltonian H(t), and a corresponding evolution
operator U (t), an invariant is an operator I(t) such that

dI

dt
= ∂ I

∂t
+ 1

ih̄
[I, H] = 0. (7)

We note that in view of Eq. (7) any dynamical invariant satisfies

I(t) = U (t)I(0)U−1(t). (8)

It possesses a remarkable property that any eigenstate |φn(0)〉 of
an invariant operator at time zero I(0) evolves continuously into
the corresponding eigenstate |φn(t)〉 of the invariant operator I(t)
at time t (each eigenstate is associated with the time-independent
eigenvalue λn),∣∣Ψn(t)

〉 = U (t)
∣∣φn(0)

〉 = eiθn(t)
∣∣φn(t)

〉
(9)

exactly as an eigenstate of the Hamiltonian does when the evo-
lution is adiabatic. It follows from the Schrödinger equation
(ih̄∂/∂t − H(t))|Ψn(t)〉 = 0 that the corresponding global phase
θn(t) satisfies the relation (3).

One way to describe the Lewis and Riesenfeld’s exact quantum
evolution is to introduce the concept of elementary projectors on
an eigenstate |φn(t)〉 of the invariant operator I(t)

Pn(t) = ∣∣φn(t)
〉〈
φn(t)

∣∣. (10)

It is easy to verify that each projector Pn(t) is therefore a constant
of motion, i.e., Pn(t) = U (t)Pn(0)U+(t), and the exact evolution
can be formally written, in terms of the evolution operator as

∀t: U (t)Pn(0) = Pn(t)U (t). (11)

Notice that if, initially, the system is in the eigenstate |φn(0)〉 so
that I(0)|φn(0)〉 = λn|φn(0)〉, then

Pn(0)
∣∣φn(0)

〉 = ∣∣φn(0)
〉

(12)

and (11) gives

U (t)
∣∣φn(0)

〉 = Pn(t)U (t)
∣∣φn(0)

〉
. (13)

2.2. Generalization to the continuous spectrum case

The Lewis and Riesenfeld theory in a continuous spectrum
was raised for the first time by Hartley and Ray [15] where
they extended this theory for a general Ermakov system to cases
where the invariant has continuous eigenvalues. They looked, as
an ansatz, at the eigenfunctions in a continuous spectrum |φk(t)〉
of the invariant operator I(t) and the solution |Ψk(t)〉 of the
Schrödinger equation in the form∣∣Ψk(t)

〉 = eiθk(t)
∣∣φk(t)

〉
. (14)

The limitation of the Hartley–Ray approach is that, in general,
there is no explicit formula of Lewis and Riesenfeld phase and
they didn’t deal with problems having continuous spectra of ori-
gin. In the following, we will show that (14) is a solution of the
Schrödinger equation, this has not been shown before in the con-
tinuous case.

To find the phase, usually most authors [16] will substitute the
solution (14) into the Schrödinger equation which leads to the fol-
lowing result

h̄
d

dt
θk(t)

∣∣φk(t)
〉 = [

ih̄
∂

∂t
− H

]∣∣φk(t)
〉
, (15)

and then project this equation onto the 〈φk(t)| (this proce-
dure is clearly parallel to that for the discrete case), it fol-
lows that the corresponding global phase θk(t) satisfies the rela-
tion h̄ d

dt θk(t)δ(0) = 〈φk(t)|[ih̄ ∂
∂t − H]|φk(t)〉 which is infinite, i.e.,

δ(0) = ∞. In fact, it’s well known and easily shown that the
term 〈φk(t)|[ih̄ ∂

∂t − H]|φk′(t)〉 is a one-point support distribution,
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