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It is important to have an accurate estimate of the unknown parameters such as the separation distance
between interacting materials in Casimir force measurements. Current methods tend to produce large
estimation errors. In this Letter, we present a novel method based on an adaptive control approach to
estimate the unknown parameters using large amplitude dynamic Casimir measurements at separation
distances of below 1 μm where both electrostatic force and Casimir force are significant. The estimate is
proved to be accurate and the effectiveness of our method is demonstrated via a numerical example.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It was predicted that an attractive force exists between two
uncharged parallel metallic plates placed in vacuum without ex-
ternal electromagnetic fields [1]. This effect is called Casimir effect
which can be explained by quantum mechanics that the imposed
metallic boundaries change the zero point electromagnetic energy
between the two plates [2]. The concept of Casimir effect is funda-
mental in modern physics and it is related to elementary particle
physics, gravitation and cosmology, atomic and condensed matter
physics [3]. The Casimir effect is a macroscopic quantum effect and
the Casimir force becomes strong when the separations between
interacting materials are in the nanometer scale [4]. This makes
the measurement of the Casimir force possible by using some
microelectromechanical systems (MEMS) [5] and atomic force mi-
croscopy (AFM) [6]. Besides its impact on fundamental physics,
the Casimir force at the nanometer scale is playing a big role in
MEMS technology and it will cause stiction and device failure if
the separation gaps among components are less than certain val-
ues [7]. Over the last decade, extensive experiments have been
performed to study the effect of surface roughness, dielectric per-
mittivity of materials and temperature on Casimir force [8]. Most
Casimir force measurements are conducted between a sphere and
a plate to avoid the difficulty in maintaining a high degree of
parallelism between plates [9]. The Casimir force is nonlinearly
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dependent on the separation between interacting materials. It is
easy to compare theories and experimental results by measuring
the strength of the Casimir force at various separations. However,
these static measurements are vulnerable to noise and drift [10].
It has been proven that dynamic measurement is a better choice
for weak force measurements [11]. It has been applied to Casimir
force measurements [6] and the measurement sensitivity will be
greatly improved if the vibration amplitude is enlarged [12].

Currently, a crucial challenge in Casimir force measurements is
the ability to obtain an accurate estimate of the separation gap be-
tween two interacting materials, as have been pointed out by sev-
eral research groups [13,14]. The reason is that the Casimir force
is detectable only when the separation gap is less than several mi-
crometers which is much smaller than the size of the interacting
materials. This creates difficulty if external devices are employed
to measure this quantity. Currently, the separation gap is estimated
during the electrostatic calibration in most Casimir force measure-
ments [14,15]. Even if the interacting materials are clean and the
measurement is conducted in vacuum environment, electrostatic
force exists besides the Casimir force. The strength of the elec-
trostatic force is dominating when the separation gap is above
1–2 μm and the electrostatic calibration is conducted in this range
before the Casimir force measurements at smaller separations. The
electrostatic force has the expression of Fe = −πε0 R[V 2

m + V 2
1 ]/d

where ε0 is the permittivity of free space, Vm is the contact po-
tential difference between two interacting materials, V 1 is due to
the electrostatic patch charge and d is the separation gap. In elec-
trostatic calibrations, a bias voltage is tuned between interacting
materials to zero Vm at a fixed d by minimizing the electrostatic
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force. Parabolic fitting is used to estimate d [16]. There are several
challenges to obtain an accurate estimate of d via this method.
First of all, the sphere radius R is determined by Scanning Elec-
tron Microscopy (SEM). Even if the measurement error in R is only
1%, the resulting estimation error in d is more than 10 nm. This
results in significant measurement errors because some Casimir
force measurements are conducted when d is less than 100 nm
[6]. Secondly, the estimation accuracy is further degraded by drift
and noise since the electrostatic calibration is conducted when the
sphere is kept static and it is time consuming for the voltage tun-
ing process.

To improve the accuracy in separation gap estimation, it is
desired to conduct the estimation process in large amplitude dy-
namic force measurements at separations of below 1 μm. But
several new challenges are created which make an accurate esti-
mation difficult. Both the Casimir force and the electrostatic force
need to be taken into account when d is below 1 μm. In addition,
nonlinear dynamics like hysteresis, bistability and harmonics may
be observed if the vibration amplitude of the sphere is large be-
cause both the electrostatic force and the Casimir force are highly
nonlinear when d is small [5,17,18]. From system control point
of view, the unknown parameter d is nonlinearly parameterized
in the dynamic system and inaccurate estimates will be obtained
if conventional parameter estimation techniques like linear filter-
ing [19] are applied. Although several adaptive control approaches
have been proposed for the purpose of parameter estimation in
dynamic systems with nonlinearly parameterized unknown param-
eters [20–22], they are not suitable for our problem because the
assumptions made in their methods are not valid here. In this
Letter, we will propose a novel approach based on periodic adapta-
tion [23] to estimate the interaction forces. Then a new parameter
estimation technique is introduced to estimate the unknown sepa-
ration gap. We prove that the estimate of the separation gap will
converge to the true value eventually. To facilitate the real imple-
mentation of our method in practice, all the assumptions made in
our method are compatible with the real set-up and only the mea-
surable data is processed in the estimation. Last but not least, the
effectiveness of our method is shown via a numerical example.

2. Problem formulation

The algorithm proposed is based on the dynamic Casimir force
measurements using AFM. The setup consists of a polystyrene
sphere attached on a cantilever (Fig. 1). The piezo is used to adjust
the separation between the sphere and the sample. A sinusoidal
electrical signal is used to excite the cantilever vibration and the
sphere dynamics is recorded via an optical detector. The system
dynamics of the sphere can be described as [24]:

ẋ1 = x2,

ẋ2 = −μx2 − kx1 + u + F (R, x1 + z) (1)

where x = [x1, x2]T are the states of the system and they are mea-
surable. They describe the displacement and velocity of the sphere
movement. μ > 0 is the normalized damping of the cantilever and
k > 0 is the normalized spring constant of the cantilever. μ and k
can be measured during the calibration. u is the electrical excita-
tion signal which is continuous and bounded, F (R, x1 + z) denotes
the normalized electrostatic force and the Casimir force between
the sphere and the sample and it is formulated as:

F (R, x1 + z) = − Rπε0 V 2
1

m(x1 + z)
− Rπ3h̄c

360m(x1 + z)3
rc(x1 + z) (2)

where the first term is the residue electrostatic force after the
electrostatic calibration and V 1 can be calculated during the pro-
cess. The second term is the Casimir force where m is the effective

Fig. 1. The schematic of Casimir force actuated system.

mass of the sphere–cantilever ensemble, c is speed of light and h̄
is the reduced Plank constant, z is the separation distance when
the sphere is at equilibrium and rc(x1 + z) is the conductivity cor-
rection to the ideal Casimir force [25]. In this formulation, the
separation gap d = x1 + z is varying with respect to time as the
sphere is vibrating. z is the parameter to be estimated. Although
the sphere radius R can be measured by SEM in practice, it is as-
sumed to be an unknown parameter in our method. In that case,
the estimation of the separation gap is not affected by the mea-
surement error in R . It can be verified that F is a known local
Lipschitz continues function of x1. System (1) is assumed to satisfy
the following property:

Property 1. The system states x satisfy:

lim
t→∞

(
x(t) − x(t − T )

) = 0 (3)

where T is a known constant. This is true in real dynamics so far
even if severe nonlinear phenomena like hysteresis, bistability and
harmonics are observed or predicted.

In this Letter, our objective is to estimate the unknown param-
eter z based on the system states x.

3. Observer design

Here, we present an observer to estimate the total force F (t)
first. The observer is designed to be:

˙̂x2 = −μx2 − b1(x̂2 − x2) − kx1 + u + F̂ (t) (4)

where b1 > 0 and the update law for F̂ (t) is chosen to be:

F̂ (t) = −q(t)
lε x̃2(t)

2
(t < T ),

F̂ (t) = F̂ (t − T ) − lε x̃2(t)

2
(t � T ) (5)

where x̃2 = x̂2 − x2 and lε > 0 is the gain to control the speed of
convergence. q(t) is a continuous function satisfying q(0) = 0 and
q(T ) = 1. Here we choose q(t) = t/T . It is easy to verify that with
our chosen update law, F̂ (t) is continuous everywhere. The error
dynamics is governed by the following equation:

˙̃x2 + b1x̃2 = F̂ (t) − F (t). (6)

With the proposed observer and the update law, we have the fol-
lowing result:

Theorem 1. Given the plant as described in (1), with the observer in (4)
and the update law in (5), the following statements are true:
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