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We investigate the ballistic phonon transport through a Fibonacci array of acoustic nanocavities in a
narrow constriction of a semiconductor nanowire at low temperatures. It is found that the transmission
spectrum of such a system consists of quasiband gaps and narrow resonances caused by the coupling
of phonon waves. Both phonon transmission and thermal conductance exhibit the similarity due to the
Fibonacci sequence structure. The similarity is sensitive to the number n and parameters of nanocavities.
The results are compared with those in a periodic acoustic nanocavities.
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1. Introduction

The acoustic vibrational and phonon thermal transport proper-
ties of the nanoscale structures and materials have attracted an
increasing amount of attention in recent years [1]. The introduc-
tion of the concepts of phononic crystals [2] and nanocavities [3]
is the quintessence of these studies in order to manipulate acous-
tic waves. It has been demonstrated that acoustic nanocavities,
which open the possibility of confinement and amplification of
the acoustic phonons, can strongly confine the acoustical phonons
[3–5], even selectively generate confined acoustic modes [6], and
enhance the interaction between phonon and light [7]. When a
large series of phonon cavities are coupled one after the other, the
discrete confined energy states form phonon bands. As the energy
of the ith cavity differs from that of the (i − 1)th in a constant
value, which introduces a phonon equivalent effective linear po-
tential, phonon Bloch oscillation can exist in the acoustic cavity
structures, while the acoustic-phonon pulses impinging on a struc-
ture with a parabolic effective potential will develop Bloch-like
oscillation [8]. Very recently, Lanzillotti-Kimura et al. experimen-
tally demonstrated that Bloch oscillations of acoustic phonons can
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be directly generated and probed [9]. In these studies, acoustic
nanocavities must be inserted between two finite semiconductor
superlattices acting as two acoustic Bragg mirrors. By using the
multilayer structure consisting of two materials with contrasting
acoustic properties, Lanzillotti-Kimura et al. verified that the cou-
pling of the discrete energy states of two acoustic cavities leads to
a splitting of modes [8]. Another phonon mode splitting behavior
caused by one acoustic cavity has also been found in a Ψ -shaped
semiconductor nanowire: different phonon modes transport selec-
tively into different channels [10]. When more than one nanocavity
is embedded in a narrow constriction, the nanowire has selective
transmission and filter actions for the ballistic phonon [11].

Tailoring the acoustic-phonon spectrum to manage the phonon
transport in nanoscale has also been the subject of intense inter-
est at present due to its fundamental interest and critical role in
controlling the performance and stability of nanostructural devices.
An enormous theoretical and experimental researches on phonon
heat transport of the nanoscale structures and materials has been
reported [12–28]. The most remarkable examples in this domain
are the observation of the quantization of the phonon band struc-
ture through an analysis of the specific heat [12], the discovery
of ballistic phonon transport [13], and the measurement of the
quantum of thermal conductance in a nanowire [14]. Another rev-
olutionary discovery is the proposal and experimental verification
of the solid-state thermal rectifier [15] and transistor [16]. In tech-
nological applications such as nanotube-based devices, thermal
properties are of central importance for understanding and con-
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trolling heat dissipation and self-heating effects [15,17,18]. More
recently, we reported that phonon heat can be dissipated through
different channels by properly tuning the parameters of the cavity
in a Ψ -shaped semiconductor nanostructure [10], and introduc-
ing a nanocavity into a narrow constriction in a semiconductor
nanowire, leads to an increase of the phonon transmission and
to an enhancement of the thermal conductance at very low tem-
peratures [11]. The material properties can also affect the ballistic
phonon transport in the nanostructures [29], which is similar to
the diffusive phonon transport.

The Fibonacci sequence (or quasiperiodic order) has been at-
tracting a considerable interest since the experimental discovery
of icosahedral diffraction pattern [33]. A fascinating feature of the
quasiperiodic structures is that they exhibit collective properties
not shared by their constituent parts. Furthermore, the long-range
correlations induced by the construction of these systems are ex-
pected to be reflected to some degree in their various spectra
(as in light propagation, electronic transmission, density of states,
polaritons, etc.), defining a novel description of disorder [34–36].
Another important motivation for studying these structures comes
from recognizing that the localization of electronic states, one
of the most active fields in condensed matter physics, could oc-
cur not only in disordered systems but also in the deterministic
quasiperiodic systems [37]. The most striking characteristic of the
quasiperiodic structures is that they exhibit a highly fragmented
energy spectrum displaying a self-similar pattern. Many interest-
ing features have been uncovered due to the structures with Fi-
bonacci sequence exhibiting some properties of the periodic or-
der and some of the disordered systems [38–41]. For example,
both electronic transmission coefficient and conductance exhibit
self-similarity and the six-circle property in a Fibonacci magnetic
superlattice [42], nonresonant Zener tunneling can be observed in
a quasiperiodic lattices [43], the properties of the plasmon po-
laritons in photonic metamaterial Fibonacci superlattices strongly
depend on the Fibonacci-sequence order m [44]. It is also reported
that the Fibonacci structure acts as a filter for the phonon’s trans-
mission spectra [45]. In addition, the propagation bands separated
by band gaps have been demonstrated in acoustic and photonic
experiments [46,47]. These studies mainly focused on electronic or
optical properties in multilayered structures with constituents ar-
ranged in a quasiperiodic fashion. In this Letter, we will examine
the behaviors of ballistic phonon transport in acoustic nanocav-
ities arranged according to the Fibonacci sequence. This ‘special’
arranged acoustic nanocavities is different from usual Fibonacci
sequence, such as the multilayered structures with constituents
arranged in a quasiperiodic fashion. Our results show some in-
teresting physical properties such as the transmission spectrum
consisting of quasiband gaps and narrow resonances, the similar-
ity of phonon transmission and thermal conductance depending on
the number n and parameters of nanocavities.

This Letter is organized as follows. In Section 2, a brief descrip-
tion of the model and the necessary formulae used in calculations
is given. The numerical results are presented in Section 3 with
analyses. Finally, we summarize our results in Section 4.

2. Model and formalism

A series of acoustic nanocavities embedded in a narrow con-
striction of a semiconductor nanowire is depicted in Fig. 1. The
nanocavities are arranged serially according to a ‘special’ Fibonacci
rule, i.e., the distance between them increases with the Fibonacci
sequence, dj = d( j − 1) + d( j − 2) with d1 = d2, where dj denotes
the distance between the ( j −1)th and jth cavities. D and W 1 de-
note the cavity length and transverse width, respectively. W 1 and
W 2 are the transverse widths of the nanowire and the narrow
constriction, respectively. The system is considered to be a two-

Fig. 1. (Color online.) A series of acoustic nanocavities embedded in a narrow con-
striction of a semiconductor nanowire. The nanocavities are arranged serially ac-
cording to a ‘special’ Fibonacci rule, i.e., the distance between them increases with
the Fibonacci sequence, dj = d( j − 1) + d( j − 2) with d1 = d2. D and W 1 denote
the cavity length and transverse width, respectively. W 1 and W 2 are the transverse
widths of the nanowire and the narrow constriction, respectively. h = (W 1−W 2)/2.

dimensional system in the x–y plane. We divide the structure into
two parts: one is the narrow constriction connected to left and
right nanowires. The narrow constriction parameterized by trans-
verse width W 2 is continuously separated into sub-constriction by
acoustic nanocavities. The other is the main wire, i.e., the left and
right wires with uniform transverse width W 1. It is assumed that
the other ends of left and right wires are separately connected to
two thermal reservoirs serving as phonon source and phonon sink
(not shown in Fig. 1) with an infinitely small temperature gradi-
ent δT (δT = T L–T R > 0, and δT � T L, T R . Here, T L (T R) is the
temperature of the left (right) reservoir.) So the mean tempera-
ture T [T = (T L + T R)/2] can be adopted as the temperature of
the left and right wires in following calculations. The reservoirs
are at thermal equilibrium with phonon distribution in the Bose–
Einstein form, fBE(ω, T ) = [exp(h̄ω/kB T )− 1]−1. It is also assumed
that the thermal contacts between the wires and the reservoirs is
reflectionless: all phonons going into reservoirs are assimilated by
the reservoirs without being rebound back to the wires. At low
temperatures, phonon–phonon interactions between different vi-
brational modes can be safely ignored [29–32]. Therefore the left
and right wires act as phonon waveguides. Supposing that the
incident phonon waves originate from the left wire, they then suc-
cessively enter the converging and diverging regions where they
suffer multi-reflection and interference, and finally, the phonon
waves partially transmit to the right wire and partially rebound
back to the left wire.

At low temperatures, ballistic phonon wavelengths are generally
over several hundreds of angstroms which is much greater than
the dimensions of the structure. Naturally, microscopic length such
as the atomic bond length is much smaller than the wavelength of
the ballistic phonon. Therefore, we use the scalar model of contin-
uum medium theory to describe the ballistic phonon propagation
in this work [29–32]. According to this theory, the displacement
field U(x, y) satisfies the wave equation

v2
W ,NC,C ∇2U(x, y) + ω2

W ,NC,C U(x, y) = 0, (1)

where v is the wave velocity and ω is the frequency of phonon, W ,
NC, and C denote left and right nanowires, nanocavities, and the
constrictions, respectively. Here, we take the stress-free boundary
condition at the structure surfaces

∂U

∂n̂
= 0, (2)

where n̂ is the unit vector perpendicular to the surface.
According to Eq. (1), the solutions of phonon displacement field

equations in the nanowires, nanocavities, and the constrictions, can
be written as follows:
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