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A controlled Lorenz model with fast-slow effect has been established, in which there exist order gap
between the variables associated with the controller and the original Lorenz oscillator, respectively. The
conditions of fold bifurcation as well as Hopf bifurcation for the fast subsystem are derived to investigate
the mechanism of the behaviors of the whole system. Two cases in which the equilibrium points of the
fast subsystem behave in different characteristics have been considered, leading to different dynamical
evolutions with the change of coupling strength. Several types of bursting phenomena, such as fold/fold
burster, fold/Hopf burster, near-fold/Hopf burster, fold/near-Hopf buster have been observed. Theoretical
analysis shows that the bifurcations points which connect the quiescent state and the repetitive spiking
state agree well with the turning points of the trajectories of the bursters. Furthermore, the mechanism
of the period-adding bifurcations, resulting in the rapid change of the period of the movements, is
presented.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

As a typical simple chaotic model, the Lorenz system, represent-
ing three modes of the Oberbeck–Boussinesq equations for fluid
convection in a two-dimensional layer heated from below, has at-
tracted a lot of researchers to work on the dynamical evolution
to chaos in the past decades [1–4]. It is found that three equi-
librium points may exist in the system, the properties of which
change with the variation of the parameters, while the trajectory
of the system cycling around two foci may form a chaotic attrac-
tor as butterfly [5,6]. Obviously, from an implementation point of
view, chaotic systems with simpler structures deserve more atten-
tion, for which 3D autonomous systems are of the lowest possible
dimensions. Therefore, many 3D chaotic systems have been estab-
lished, such as Chua’s circuit [7,8], Chen system [9], etc. To stabilize
the oscillations or to utilize chaos, how to control these systems
to meet the need is an important task in nonlinear dynamics. For
the Lorenz system, a lot of controlling schemes have been intro-
duced, which may lead the dynamics settle down to the targets,
such as an stable equilibrium point, a limit cycle or chaotic oscil-
lation [10–12]. However, in most of the reports, the controllers are
designed on the same time scale with the original systems. In this
Letter, we consider the case when there exists order gap between
the two time scales associated with the controller and the Lorenz
oscillator, respectively.
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Many dynamical systems in physics, chemistry, biology and
geo-physics involve two time scales [13–16], which often behave
in periodic state characterized by a combination of relatively large
amplitude and nearly harmonic small amplitude oscillations, con-
ventionally denoted by N K with N and K corresponding to large
and small amplitude oscillations, respectively. Generally, we say
the system is in quiescent state (QS) stage when all the variables
are at rest or exhibit small amplitude oscillations. The effect of
two time scales may lead the systems to spiking state (SP), in
which the variables may behave in large amplitude oscillations
[17]. Bursting phenomena can be observed when the variables al-
ternating between QS and SP. Two important bifurcations can be
found associated with the bursters: bifurcation of a quiescent state
that leads to repetitive spiking and bifurcation of a spiking attrac-
tor that leads to quiescence [18].

Here we design the controller, the variables of which change
on much smaller time scale to investigate the dynamics of the
whole system. Different types of bursters as well as the mechanism
will be presented and some new phenomena, such as sequence of
period-adding bifurcations will be explained in details.

2. Mathematical model of controlled Lorenz oscillator

For the Lorenz oscillator, we can design a controller such that
the full system can be written in the form

ẋ = σ(y − x) + αu, ẏ = ρx − y − xz − αv,

ż = −βz + xy,
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Fig. 1. Phase portraits for (a) σ = 1; (b) σ = 10.

u̇ = ε(yv − xz), v̇ = ε(x − y)u, (1)

where ε is introduced to describe the order difference between
the two time scales related to the original state variables and the
controlling variables with the controlling strength α.

Obviously, when α = 0, the full system reduces to Lorenz os-
cillator. The zero point, denoted by E0(0,0,0), is always the equi-
librium point of the vector field associated with the characteristic
equation, written in the form

(λ + β)
[
λ2 + (σ + 1)λ − σ(ρ − 1)

] = 0, (2)

which suggests that E0 is stable only for β > 0, σ + 1 > 0 and
−σ(ρ − 1) > 0. However, for β(ρ − 1) > 0, other two equilibrium
points can be observed, denoted by E± [±√

β(ρ − 1),±√
β(ρ − 1),

(ρ − 1)], the stabilities of which can be determined by

λ3 + (σ + β + 1)λ2 + β(σ + ρ)λ + 2σβ(ρ − 1) = 0, (3)

implying that both E± are stable when the parameters satisfy σ +
β + 1 > 0, 2σβ(ρ − 1) > 0 and σ 2 + (β − ρ + 3)σ + ρ(β + 1) > 0.

For the parameters fixed at β = 8/3, ρ = 28 in this Letter, when
α = 0, all the three equilibrium points, i.e., E0 and E± , can be
observed, the characteristics of which can be further determined
by the parameter σ . Here we consider two cases with σ = 1
and σ = 10. For σ = 1, one may find that E0 is a saddle point,
while both E± are stable foci with the eigenvalues approximated
at (−2,−1.33 ± 8.38I) (see Fig. 1(a)). The phase space is divided
into two regions, corresponding to the attracting basins of the two
foci, respectively. While for σ = 10, all the equilibrium points be-
come unstable, and the trajectory forms an chaotic attractor (see
Fig. 1(b)).

However, when α �= 0, the dynamics associated with two time
scales may interact with each other to exhibit rich nonlinear be-
haviors, especially, various types of bursters, which will be de-
scribed in the following.

3. Bifurcation analysis of the fast subsystem

We now turn to the investigation of the influence of the two
time scales on the dynamical behaviors of the controlled Lorenz
oscillator. Here we take ε = 0.05 to display the order gap between
the two non-dimensional time scales and the full system can then
be considered as the coupling of two subsystems, i.e., the fast sub-
system (FS) and slow subsystem (SS) with coupling strength α.

For the fast subsystem, the equilibrium points, denoted by
Eq(x0, y0, z0), can be determined by F0 = 0, with

F0 = 3

8
x3

0 − 3

8σ
αux2

0 − 27x0 − 1

σ
αu + αv, (4)

and y0 = x0 − 1
σ αu, z0 = 3

8σ x0(σ x0 − αu). Differentiating F0 with
respect to x0 yields

F1 = 9

8
x2

0 − 3αux0

4σ
− 27, (5)

which gives two zero points, written as

xa = 1

3σ

(
αu +

√
α2u2 + 216σ 2

)
,

xb = 1

3σ

(
αu −

√
α2u2 + 216σ 2

)
, (6)

at which the function F0 reaches the extreme values, expressed by

Fa = −α3u3

36σ 3
− 10αu

σ
+ αv

− 1

36σ 3

(
α2u2 + 216σ 2)√α2u2 + 216σ 2,

Fb = −α3u3

36σ 3
− 10αu

σ
+ αv

+ 1

36σ 3

(
α2u2 + 216σ 2)√α2u2 + 216σ 2, (7)

respectively. It is easy to check that Fb > Fa , and for Fb < 0 or
Fa > 0, only one equilibrium point can be observed, while for Fa <

0 < Fb , three equilibrium points exist. Critical phenomenon occurs
for Fa = 0 or Fb = 0, at which two equilibrium points meet with
each other to form a degenerate equilibrium point corresponding
to fold bifurcation.

The stability of Eq can be determined by the associated charac-
teristic equation, written in the form

λ3 + a2λ
2 + a1λ + a0 = 0, (8)

where a2 = 11
3 + σ , a1 = 8

3 − 73σ
3 + (1 + 3σ

8 )x2
0 − 3

8 αux0, a0 =
−72σ + 3σ x2

0 − 2αux0, implying that Eq is stable only for a0 > 0,
a2 > 0 and a1a2 − a0 > 0. Instability of Eq may cause the bifurca-
tions of the fast subsystem.

In the following, we only give the bifurcation results for σ = 1,
while the bifurcation sets for σ = 10 can be derived accordingly.

3.1. Fold bifurcation

Note that the equilibrium points of the fast subsystem may
change from three to one with the variation of the parameters.
The critical condition corresponds to Fa = 0 or Fb = 0. Small per-
turbation of the parameters may cause the degenerate equilibrium
point to disappear or to split into two different types of equilib-
rium points, implying fold bifurcation occurs. Therefore, the critical
condition for the fold bifurcation can be expressed in the form
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