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We investigate charge qubit measurements using a single electron transistor, with focus on the
backaction-induced renormalization of qubit parameters. It is revealed the renormalized dynamics leads
to a number of intriguing features in the detector’s noise spectra, and therefore needs to be accounted
for to properly understand the measurement result. Noticeably, the level renormalization gives rise to
a strongly enhanced signal-to-noise ratio, which can even exceed the universal upper bound imposed
quantum mechanically on linear-response detectors.
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1. Introduction

The issue of measurement lies at the heart of the interpre-
tation of quantum mechanics. The recent upsurge in the inter-
est to the quantum computation has attracted renewed attention
to the problem of quantum measurement [1,2]. Various schemes
have been proposed for fast readout of a two-level quantum
state (qubit). Among them, especially interesting are electrometers
whose conductance depends on the charge states of a nearby qubit,
such as quantum point contacts (QPC) [3–11] and single electron
transistors (SET) [12–20]. It has been shown that the SET detec-
tor is better than QPC in many respects [21], and has already been
used for quantum measurements [22].

So far, theoretical description of the SET detector has been
mainly focused on the backaction-induced dephasing and relax-
ation, which, from the perspective of information, are conse-
quences of information acquisition by measurement [16–18]. Actu-
ally, there is another important backaction which renormalizes the
internal structure of the qubit [11], and is often disregarded in the
literature. However, this renormalization effect is of essential im-
portance, since it can crucially influence the dynamical process of
quantum measurement. It is, therefore, required to have this fea-
ture being properly accounted for in order to correctly understand
and analyze the measurement results.
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In this context, we examine the renormalized dynamics of qubit
measurements using an SET detector. The intriguing dynamics aris-
ing from the renormalization is manifested unambiguously in the
noise spectral of the detector output. It is demonstrated that in the
low bias regime, the noise peak reflecting qubit oscillations shifts
markedly with the measurement voltages. Furthermore, a peak at
zero-frequency arises, as the level renormalization results in a so-
called quantum Zeno effect. The output noise spectral allows us to
evaluate the “signal-to-noise” ratio, which provides the measure-
ment of detector effectiveness. Noticeably, it is revealed that for
the SET detector, the level renormalization leads to a considerably
enhanced effectiveness, which can even exceed the upper bound
imposed on any linear-response detectors [23].

The Letter is structured as follows. The measurement setup and
model Hamiltonian are introduced in the next Section. We sketch
the quantum master equation approach in Section 3. The results
and discussions are presented in Section 4, which is then followed
by the summary in Section 5.

2. Model description

The setup for the measurement of a charge qubit (an electron
in a pair of coupled quantum dots) by a single electron transistor
is schematically shown in Fig. 1. The entire system Hamiltonian
reads H = HS + HB + H ′ . The first component

HS = 1

2
ε σz + Ω σx + (

E + Ẽ|α〉〈α|)d†d (1)
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Fig. 1. Schematic setup for a solid-state charge qubit measurements by an SET detec-
tor. Possible electron configurations of the measured qubit and SET dot are shown
in (a)–(d), respectively.

models the qubit, SET dot, and their coupling, with pseudo-spin
operators σz ≡ |α〉〈α| − |β〉〈β| and σx ≡ |α〉〈β| + |β〉〈α|. For the
qubit, it is assumed that each dot has only one bound state, i.e., the
logic states |α〉 and |β〉, with level detuning ε and interdot cou-
pling Ω . The SET works in the strong Coulomb blockade regime,
and only one level is involved in the transport. Here, d (d†) is the
annihilation (creation) operator for an electron in the SET dot. The
single level (or equivalently, the transport current) depends explic-
itly on the qubit state, as shown in Fig. 1. It is right this mechanism
that makes it possible to acquire the qubit-state information from
the SET output.

The second component HB = ∑
�=L,R

∑
k ε�kc†

�kc�k depicts the

left and right SET electrodes. Here c�k (c†
�k) denotes the annihila-

tion (creation) operator for an electron in the electrode � ∈ {L,R}.
The electron reservoirs are characterized by the Fermi distribution
fL/R(ω). We set μ

eq
L = μ

eq
R = 0 for the equilibrium chemical poten-

tials. An applied measurement voltage V is modeled by different
chemical potentials in the left and right electrodes μL/R = ±V /2.

Electrons tunneling between SET dot and electrodes is de-
scribed by the last component H ′ = ∑

�k(t�kc†
�kd+h.c.) ≡ ∑

�(F †
�d+

h.c.), where F� and F †
� are defined implicitly. The tunnel cou-

pling strength between lead � and the SET dot is characterized
by Γ�(ω) = 2π

∑
k |t�k|2δ(ω − ε�k). In what follows, we assume

wide bands in the electrodes, which yields energy independent
couplings ΓL/R. Throughout this work, we set h̄ = e = 1 for the
Planck constant and electron charge, unless stated otherwise.

3. Formalism

3.1. Conditional master equation

To achieve a description of the output from the SET detector,
we employ the transport particle-number-resolved reduced den-
sity matrices ρ(nL,nR) , where nL(R) denotes the number of electrons
tunneled through the left (right) junction. The corresponding con-
ditional quantum master equation reads [11,24–27]

ρ̇(nL,nR) = −iLρ(nL,nR) − 1

2

{[
d† A(−)ρ(nL,nR) + ρ(nL,nR) A(+)d†]

− [
A(−)

L ρ(nL−1,nR)d† + d†ρ(nL+1,nR) A(+)
L

+ A(−)
R ρ(nL,nR−1)d† + d†ρ(nL,nR+1) A(+)

R

] + h.c.
}
, (2)

where L is defined as L(· · ·) ≡ [HS, (· · ·)], and A(±) =∑
� A(±)

� , with A(±)
� ≡ [C (±)

� (±L) + iD(±)
� (±L)]d. Here C (±)

� (±L) =∫ ∞
−∞ dt C (±)

� (t)e±iLt are spectral functions. The involving bath

correlation functions are respectively C (+)
� (t) = 〈F †

�(t)F�〉B, and

C (−)
� (t) = 〈F�(t)F †

�〉B, with 〈· · ·〉B ≡ TrB[(· · ·)ρB], and ρB the local
thermal equilibrium state of the SET leads. The involved disper-
sion functions D(±)

� (±L) can be evaluated via the Kramers–Kronig
relation

D(±)
� (±L) = − 1

π
P

∞∫
−∞

dω
C (±)

� (±ω)

L − ω
, (3)

where P denotes the principal value. Physically, the dispersion is
responsible for the renormalization [11,28–31].

3.2. Output current

With the knowledge of the above conditional state, the joint
probability function for nL electrons passed through left junc-
tion and nR electrons passed through right junction is deter-
mined as P (nL,nR) = Trρ(nL,nR) , where Tr(· · ·) denotes the trace
over the system degrees of freedom. The current through junc-
tion � ∈ {L,R} then reads I� = d

dt

∑
nL,nR

n� P (nL,nR) = Tr Ṅ� , where
N� ≡ ∑

nL,nR
n� P (nL,nR) can be calculated via its equation of mo-

tion

d

dt
N� = −iLN� − RN� + T (−)

� ρ, (4a)

with

R(· · ·) = −1

2

[
d†, A(−)(· · ·) − (· · ·)A(+)

] + h.c., (4b)

T (±)
� (· · ·) = 1

2

[
A(−)

� (· · ·)d† ± d†(· · ·)A(+)
�

] + h.c. (4c)

Straightforwardly, the transport current through junction � is
I�(t) = Tr[T (−)

� ρ(t)]. Here ρ(t) is the unconditional density ma-
trix, which simply satisfies

ρ̇ = −iLρ − Rρ. (5)

3.3. Current noise spectrum

In continuous weak measurement of qubit oscillations, the most
important output is the spectral density of the current. The cir-
cuit current of the SET detector, according to the Ramo–Shockley
theorem [32], is I(t) = ηL IL + ηR IR, where the coefficients ηL and
ηR depend on junction capacitances and satisfy ηL + ηR = 1. To-
gether with the charge conservation law IL = IR + Q̇ , where Q
represents the electron charge in the SET dot, one readily obtains
I(t)I(0) = ηL IL(t)IL(0)+ηR IR(t)IR(0)−ηLηR Q̇ (t)Q̇ (0). Accordingly,
the circuit noise spectral is a sum of three parts [18,25,33,34]

S(ω) = ηL SL(ω) + ηR SR(ω) − ηLηR Sch(ω), (6)

with SL(R)(ω) the noise spectral of the left (right) junction current,
and Sch(ω) the charge fluctuations in the SET dot. The noise spec-
tral of tunneling current SL/R can be evaluated via the MacDonald’s
formula [35–37]

S�(ω) = 2ω

∞∫
0

dt sin(ωt)
d

dt

[〈
n2

�(t)
〉 − ( Īt)2], (7)

where Ī ≡ I(t → ∞) is the stationary current, and 〈n2
�(t)〉 ≡∑

nL,nR
n2

� P (nL,nR). With the help of the conditional master equa-
tion (2), it can be shown that

d

dt

〈
n2

�(t)
〉 = Tr

[
2T (−)

� N�(t) + T (+)
� ρst

]
. (8)

Here N�(t) can be found from Eq. (4a), and ρst is the stationary
solution of the unconditional master equation (5).
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