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Graphene nanoribbons (GNR) in mutually perpendicular electric and magnetic fields are shown to ex-
hibit dramatic changes in their band structure and electron transport properties. A strong electric field
across the ribbon induces multiple chiral Dirac points, closing the semiconducting gap in armchair GNRs.
A perpendicular magnetic field induces partially formed Landau levels as well as dispersive surface-bound
states. Each of the applied fields on its own preserves the even symmetry Ey = E_j of the subband dis-
persion. When applied together, they reverse the dispersion parity to be odd and gives Ee y = —Ep _ and
mix the electron and hole subbands within the energy range corresponding to the change in potential
across the ribbon. This leads to oscillations of the ballistic conductance within this energy range.

© 2010 Published by Elsevier B.V.

Recent advantages in the fabrication techniques of graphene
nanoribbons (GNR) together with the long electron mean free path
have stimulated considerable interest in their potential applica-
tions as interconnects in nano circuits. Near the K and K’ Dirac
points for infinite graphene, the electrons are massless and chi-
ral [1]. The electronic properties of GNR are sensitive to the ge-
ometry of their edges and the number of carbon atoms N across
the ribbon. The GNR is thus classified as armchair (ANR), zigzag
(ZNR) nanoribbons for even N and their counterpart anti-armchair
(AANR), anti-zigzag (AZNR) for odd N. The armchair confinement
mixes K and K’ valleys creating chiral electrons around the I’
point. Chirality is the key ingredient for unimpeded electron trans-
port (Klein effect). Depending on N, modulo 3, the ANR/AANR can
be either metallic or semiconducting making them suitable can-
didates for use as field-effect transistors. In contrast, the zigzag
confinement does not mix the valleys but rather intertwine their
longitudinal and transverse momenta, creating edges-bound quasi-
particles between the K and K’ points. For ZNR/AZNR, the elec-
trons are not chiral (in the sense of projection of the pseudo-parity
on the particle momentum), and the electron transmission through
a potential barrier is determined by the electron pseudo-parity [2].
This quantity redefines the Klein effect as the suppressed trans-
mission through the barrier in ZNR, also known as the valley-valve
effect [3]. The latter is the basis for the proposed valley filters.
The electron confinement in GNR causes their properties to be
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quite sensitive to an applied electric [4-6] or magnetic [7-10] field.
These changes are reflected in measurable quantities such as the
ballistic conductivity and local density of states (LDOS) [11,12].

In this Letter, we report on the individual and combined effects
of an electric and magnetic field on the band structure and con-
ductance of GNRs. If only one of the fields is applied, it is well
known that the time reversal symmetry' [13] of the energy bands
for electrons and holes is preserved for all the types of GNRs we
listed above. However, the combined effect of an electric and mag-
netic field on the energy dispersion is to break the time reversal
symmetry for both electrons and holes and mix the energy bands.
The effect of mixing on the differential conductance and LDOS is
presented below and our results are compared to those obtained
when only one of the two external fields is applied to an ANR
with quantum point contacts as illustrated schematically in Fig. 1.
The ribbon is attached to left (L) and right (R) leads serving as infi-
nite electron reservoirs. The R-lead is assumed to be the drain held
at chemical potential p. The L-lead is held at DC biased chemical
potential w +eV (e is the electron charge and V is the bias poten-
tial) and serves as the source. We choose coordinate axes so that
the nanoribbon is along the x axis in the xy-plane. Mutually per-
pendicular static electric field £, along the y axis and magnetic
field B; along the z axis are applied, as shown in Fig. 1.

We calculated the energy bands for graphene with sublattices A
and B in the tight-binding model [14,1]. These are then separated

1 Since we neglect spin, the action of the time reversal operator 7 amounts to
reversing the direction of the wave vector propagation. The even/odd particle energy
symmetry may be defined as Ep x = +£7 E; y = +E; k.
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Fig. 1. (Color online.) Schematic of an ANR in the presence of an in-plane electric
field £ along the y axis and a perpendicular magnetic field B along the z axis.

into hole {h} = {1 <n < N} and electron {e} = {N <n < 2N} en-
ergy bands. The two component wave function is a normalized 2N
vector:

N ACZYGI"
(W(y)|n,k - <(U’B(J/)|n,k> ’

Along the ribbon we have a plane wave exp (ikx), characterized by
its wave vector k. The electric field induces a potential across the
ribbon U(y) =eEy(y — W /2) = Up[(y/W) — 1/2], where W is the
ribbon width and Ug = e£,W. This potential is screened by the
carriers. The screening potential is found self-consistently by solv-
ing the Poisson equation with LDOS as the source. The magnetic
field modifies the wave vector as k — k — e3,y/h, which amounts
to the Peierls phase in the hopping integrals [15]. The magnetic
field strength is assumed weak so we could take the energy levels
as spin degenerate. The dispersion curves can be experimentally
observed via scanning tunneling microscopy [16]. The tunneling
current flowing through the microscope tip is proportional to the
LDOS given by

LDOS(E, ) = Y |k ()|*8 (E — En)- (1)
n,k

The energy dispersion determines the ballistic charge current I
through the ribbon, at temperature T, by

IV, @, &y, B, T)
dk > <
=—2€Z/Evn,k[e(_vn,k)fn,k(l - n,k)
n

+9(Vn,k) n<,k(1 - n>,k)]’ (2)

where vy, = dEy /d(fik) is the carrier group velocity. At T =0,
the Fermi function at the source contact is fnfk =1—-0(Epx —
u—eV) and for the drain, we have f>k =1-0(Epx — ). We note
that Eq. (2) does not assume any symmetry for the energy disper-
sion relation. If the energy satisfies E,x = En _x, we obtain the
well-known Landauer-Biitikker formula [17]. The differential con-
ductance G(u, £y, B;) = (81/dV)y—¢ is determined by the number
of right-moving carriers through v, /|vpk| > 0 at the chemical
potential Ej, = w. Alternatively, one may take the difference be-
tween the local minima and maxima below the chemical potential
Eng < p [11].

Our numerical results for the energy bands, LDOS and con-
ductance for semiconducting ANR (N = 51) in the presence of an
electric and/or magnetic field are presented in Fig. 2. When ei-
ther only an electric or magnetic field is applied £,B, =0, the
electron/hole energy bands are symmetric with Ej x = —Eex and
time reversal symmetry is satisfied with E, y = E, _x around the
k = 0 Dirac point in Fig. 2(b.1). The latter means that if the
time for the particle is reversed, the particle retraces its path
along the same electron/hole branch. The LDOS also demonstrates
the wave function symmetry with respect to the ribbon center

LDOS(E, x) = LDOS(—E, x) = LDOS(E, —x). In accordance with the
Landauer-Biitikker formalism, the conductivity demonstrates the
familiar staggering pattern. The magnetic field by itself distorts the
weak dispersion (n close to N) so that the partially formed Lan-
dau levels E, o ~ +/B;n shows itself up as the flat parts in the
dispersion curves. The lowest Landau level provides the single con-
ducting channel (along the ribbon edges), while the rest are doubly
degenerate. When the wave vector evolves from the Dirac point,
the degeneracy is lifted and the lowest subband acquires a local
minimum. Of these two effects, the first one can be observed in
the LDOS, while the second reveals itself as sharp spikes in the
conductance as depicted in Fig. 2(b.3). For the high energy sub-
bands, when the radii of the Landau orbits (spread of the wave
function in Fig. 2(b.2)) become comparable with the ribbon width,
the confinement effects dominate and the spectra become linear
in magnetic field with Ep o ~ 3;/n. These subbands are not degen-
erate.

The main effect which the electric field has on the energy dis-
persion is to fracture Fermi surface into small pockets for k # 0,
and thereby closing the semiconducting energy gap. These zero
energy points, where the group velocity abruptly changes sign,
represent new Dirac points, which follows from the chirality of
the wave function in their vicinity [18]. The rapid changes in the
group velocity cause the appearance of spikes in the conductance
near |u| < Up/2 and its step-like pattern is broken. Due to the
Dirac symmetry of the problem, the electron-hole band structure
remains symmetric. The energy dispersion is not affected by mag-
netic field at the original Dirac point k = 0. Time reversal sym-
metry also persists. The LDOS shows that at high energies the
electric field confines the electrons and holes near opposite bound-
aries. However, at low energies the LDOS does not change across
the ribbon, which is a manifestation of the Zitterbewegung effect
(attempt to confine Dirac fermions causes wave function delocal-
ization [1]). With respect to the three cases considered above, we
point out that the hallmark of Dirac fermions is the even symmetry
of the dispersion with respect to the wave vector, and steams from
time reversal symmetry. Even though an attempt to confine them
may lead to the broken electron/hole symmetry [19], the wave vec-
tor symmetry still persists.

We now turn our attention to the most interesting case when
both electric and magnetic fields are applied together. Concurrent
action of the electric field dragging force, the Lorentz force and
confinement by the ribbon edges destroys the Dirac symmetry of
the problem so that E,j # E, _r as shown in Fig. 2(d.1). The
dispersion distortion is different for the electrons and holes, so
the symmetry between the conduction and valence bands is also
broken. On one hand, the partially formed Landau levels get dis-
torted by the confinement due to the electric field in conjunction
with the edges. Their degeneracy is also lifted. On the other hand,
the magnetic field does not allow formation of additional Dirac
points and wave function delocalization. At high energies, where
the group velocity is decreased and the drag due to the electric
field prevails. The electrons and holes get gathered at the oppo-
site ribbon edges (Fig. 2(d.2)). For lower energies, in the region
|Eq k|l < Up/2, the electron/hole dispersions overlap. The electron
bands have only local minima, whereas only the hole bands have
local maxima. Regardless of the broken Dirac k symmetry of the
dispersion, our numerical simulation of the differential conduc-
tivity shows that the Landauer-Biitikker expression still applies.
Therefore, in the overlapping region || < Up/2, the conductiv-
ity oscillates since the minimum of the electron band is followed
by the maximum on the hole band when the chemical potential
grows. As for possible applications of the broken Dirac symmetry,
the ribbon, subjected to mutually transverse electric and magnetic
fields, may serve as a field-effect transistor with a tunable work-
ing point. An interesting feature of our results is that there is not
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