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1. Introduction

The Gurevich-Pitaevskii (GP) special universal solution of the
Korteweg-de Vries (KdV) equation

Ur 4+ Uly + Uxxx =0 (1.1)

was introduced in [1] in connection with the problem of descrip-
tion of collisionless shock waves (Sagdeev showed in [2] that such
waves are of oscillating character). The behaviour of the GP spe-
cial solution for t - —oo and x — Fo0 is determined in the main
from the cubic canonical equation of the cusp catastrophe

x—tu+ul=0. (1.2)

The GP solution to the KdV equation is one of the most in-
teresting special functions of the modern nonlinear mathematical
physics.

In [1] it is shown that in problems of dispersion hydrodynamics
(in particular, in problems of plasma theory) the GP special solu-
tion appears near the points of overturning of simple waves. From
the results of [3-5] one actually sees that the same universal spe-
cial function appears near the points of overturning of the generic
state solutions to diverse dispersion perturbations of the equations
of one-dimensional motion of ideal incompressible liquid

pe+ (o) =0,
v+ Vv +a(p)py =0.
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Here, p is the density of the liquid, v the velocity and «a(p) =
(c(p))?/p, where c(p) =/p’(p) is the speed of sound and p(p)
the pressure. In particular, this is the case for solutions of the shal-
low water equations

i+ (hAL), = (% A, + 0 (%),
1 1
Ayt 5 (A + gh = S (Al + AL — (4)°) + 0 (e%),

where h is the free boundary, A the potential of bottom velocity
and g the acceleration of gravity. The right-hand sides can actually
be written as complete series in powers of the parameter ¢ by the
procedure given for instance in [6, Ch. 1, §4] (and not only as the
so-called second approximations, as stated in [4]).

In the 1990s there were discovered surprising connections of
the GP special solutions with some problems of quantum grav-
ity. In [7] this solution was showed to simultaneously satisfy the
fourth order ordinary differential equation

u +§uu +§(u )2+i(x—tu+u3):o (1.3)
XXXX 3 XX 6 X 18 ’ .
which had been studied for t =0 in [8] and [9] in connection
with evaluating nonperturbative string effects in two-dimensional
quantum gravity (Eq. (1.3) belongs to a class of massive string

equations). In [10] the solution of

1 1
<W3 — WWxyx — E(WX)Z + waxxx)

+15T w? 1W =X
32 3 XX )=
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with asymptotics v X as X — foo was treated numerically in con-
nection with problems of quantum gravity. One can show that this
solution U(t, X) is also equivalent to the GP special solution of
(1.1) for t > 0 (but not for t < 0).

Dubrovin showed in [11] and [12] directly by means of the the-
ory of approximate symmetries [13] that it is the solution of (1.3)
with asymptotics (1.2) that appears near the points of wave over-
turning for the very diverse singular dispersion perturbations of
the equations of one-dimensional hydrodynamics.

The results of numerical simulations presented in [10] demon-
strate rather strikingly that the GP special solution of the KdV
equation possesses a domain of undamped oscillations for t large
enough. The authors of [10] did not conjecture any relation of their
Letter to the GP special solution and raised the problem of describ-
ing this domain of oscillations. Meanwhile Gurevich and Pitaevskii
[14] had used successfully the self-similar solutions of the aver-
aged Whitham equations [15] to solve the problem.

The self-similar solutions in question were constructed in ex-
plicit form by Potemin [16]. However, the problem on the leading
term of asymptotics of the GP special solution in the domain of
Whitham oscillations has been open up to now. One not simple
question still unanswered has been that on the phase shift.

Our purpose is to show how it is possible to construct the
leading term of the GP special solution in the zone of oscillations
without using any averaging methods. To this end we derive cer-
tain algebraic equations for the slowly varying amplitude and the
leading term of the phase, which are actually equivalent to those
of [16]. Moreover, we determine the phase shift of the solution in
the oscillation zone.

Our approach may also be of use for the study of undamped
oscillations of other common solutions to integrable partial and or-
dinary differential equations which are of importance in physics. In
particular, it applies to two universal solutions of the KdV equation
treated in the recent article [17]. Almost one problem in the ap-
proach is some awkwardness of analytical calculations. However,
invoking modern programs for symbol calculations (in this work
we use Maple) often allows one to get rid of such problems with-
out particular difficulties.

2. Evaluation of phase shift

Consider the solution of the KdV equation that, for t - —o0
and x — o0, is determined in the main from the cubic equation
(1.2). It is known that for this solution for positive t there is a
domain where dissipationless shock waves appear.

We are aimed at constructing asymptotics of the solution in this
domain, when t — oo. Following familiar techniques, we change
the variables by

u=/tlu(t, 2).
X

Z=—F=.
|t|3/2

Then Eqgs. (1.1) and (1.3) take the form
1 —7/2
tUt—i—E(U—BZUZ)—i—UUZ—i—t Uz; =0,
5
t77Uzzzz + ﬁlﬁ”z (GUUZZ + 3(Uz)2)

5
+ﬁ(z—U+U3):0. (2.1)

We now look for a solution U of the system in the form of
asymptotic series

U=Uo(p,2) +t U1(p,2) +t7"?Us(p,2) + -, (2.2)

where Ug, Uj and U, are 2m-periodic in the fast variable ¢. This
latter is assumed to be of the form

e=t"f2) +5(2),

where by s(z) is meant precisely the phase shift.
For the unknown function Uy we get the nonlinear system

Q’9,Uo + QRI,Ug + QUodyUg =0,
5
Q*a5Uo + 5 Q*(2U0d3U0 + (3,Uo)?)
5
—(z—Ug+U3)=0
+18(z 0o+ 0) s
while the systems for Uj
Q*3,U1 + QR+ U0)dyUr + Qd,UoUs = Fi,
5
404 2 2
QU1 +30Q (Uod, Ut +8,U0d,U1)
5 2 202
+ 15 (3U5 +3Q°9 U0 — 1)U = F5,
and for U,
Q0,Uz + Q (R + Ug)dyUsz + Qd,UoUz =G1,
5
404 2 2
Q 3¢U2+§Q (U08¢U2+8¢U08¢U2)
5
+=(3U§ +3Q%;Uo — 1)U2 =G

18

proves to be linear. Here, F{ and F, are explicit functions depend-
ing on z and Up, and G; and G, are explicit functions depending
on z and Uy, Uy, i.e., the right-hand sides are explicit functions
depending on z and on the preceding corrections. We write

Q=f,
7 3

R= —i — =z (2.3)
4 f 2

for short.

From the compatibility condition of the equations for Uy we
obtain a first order equation

1 1
Q*@pU0)* + U3 + RUF + 3

+ %(1512 —54R? - 52) = 0.

(18R? = 5)U

(2.4)

From the compatibility condition of the equations for U; we derive
a nonlinear equation

d ~ 1486R*—171R?+9zR+5
dz=~ 9 (54R3 —9R +2)(2R + 32)

for the unknown function R = R(z). (In Section 4 we show that
this equation agrees with results obtained earlier.) When requir-
ing the compatibility of the equations for U,, we deduce that the
function Ug(¢, z) should satisfy, together with (2.4), a nonlinear
ordinary differential equation in the variable z of the form

(2.5)

95Uo P3(Uo)
2Ug— —2 3,U0)? a,U
U0 (3¢U0)2( z 0) +(3¢U0)2 zU0
P4(Uo)
+3,Uo(s" + Hs') + ——= =0. (2.6)
% ( ) (8¢Uo)2

Here, P3(Up) and P4(Up) are polynomials in Uy of degrees 3
and 4, respectively, with coefficients depending on z and R. The
function H = H(z, R) is given by
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