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The topic of fractional calculus is enjoying growing interest among mathematicians, physicists and
engineers in recent years. For complex network consisting of more than two fractional-order systems,
however, it is difficult to establish its synchronization behavior. In this Letter, we study the synchronized
motions in a star network of coupled fractional-order systems in which the major element is coupled to
each of the noninteracting individual elements. On the basis of the stability theory of linear fractional-
order differential equations, we derive a sufficient condition for the stability of the synchronization
behavior in such a network. Furthermore, we verify our theoretical results by numerical simulations of
star-coupled network with fractional-order chaotic nodes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus (FC) is a generalization of ordinary (integer-
order) differentiation and integration to its fractional (non-integer)
order counterpart, which has been known since the letter be-
tween Leibniz and L’Hôpital on September 30, 1695. For the past
300 years, the theory of factional derivatives was developed pri-
marily as a pure theoretical field useful only for mathematicians
[1–3]. Nowadays, however, it was found that many systems in in-
terdisciplinary fields, such as electrode–electrolyte polarization [4],
viscoelastic systems [5], dielectric polarization [6], electromagnetic
wave [7], and boundary layer effects in ducts [8], can be described
by fractional differential equations (FDEs). These research efforts
have shown that fractional derivatives provide an excellent tool for
describing the memory and hereditary properties of various mate-
rials and processes.

It has been shown that some fractional-order dynamical sys-
tems, as generalizations of many well-known integer-order sys-
tems, can also behave chaotically, for example, the fractional-order
Duffing system [9], the fractional-order Chua system [10], the
fractional-order Lorenz system [11], the fractional-order Rössler
system [12], the fractional-order Chen system [13], the fractional-
order Lü system [14], the fractional-order unified system [15], and
so on. Recently, due to its potential applications in secure commu-
nication and control processing, synchronization of fractional-order
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chaotic systems has received a great deal of attention [15–24]. Li
et al. [16] numerically investigated the master–slave synchroniza-
tion of fractional Chua and Rössler systems which represents the
first report on the synchronization of fractional-order dynamical
systems. In Ref. [17], Lu presented a drive-response synchroniza-
tion method with linear output error feedback for a class of frac-
tional chaotic systems via a scalar transmitted signal. A nonlinear
controller for synchronizing integer-order differential systems has
been successfully extended to fractional Chen system to achieve
complete synchronization [18]. In Ref. [20], chaos synchroniza-
tion of fractional Duffing, Lorenz and Rössler systems was studied
with three different coupling methods. Using the pole placement
technique, a nonlinear state observer has been designed for syn-
chronizing a class of nonlinear fractional-order systems [23]. More
recently, we proposed a new synchronization approach for coupled
fractional-order systems based on the open-plus-closed-loop con-
trol method [24].

It should be noted that most of research efforts mentioned
above have concentrated on studying synchronization behavior of
two coupled fractional-order nonlinear oscillators. However, many
systems in the real world usually consist of a large number of
highly interconnected dynamical units to form a ‘complex net-
work’ [25]. Examples of networked systems include both naturally
occurring networks (such as ecological networks, food webs, cel-
lular and metabolic networks, gene regulatory networks), as well
as man-made networks (such as the World-Wide Web, electrical
power-grids, collaboration networks of research scientists, social
networks of acquaintances and friendships, supervisory control and
communication networks, and distributed sensor networks). There-
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fore, it is very necessary to synchronize complex networks of cou-
pled integer-order or fractional-order nonlinear oscillators. Because
the nodes in complex networks are high-dimensional, the network
connectivity is highly coupled across the population and the wiring
can change over time, understanding the synchronization behavior
in network organization is a difficult task and hence received less
attention in the research field of fractional-order systems [26,27].

Our interest in this Letter is the analytical study of the syn-
chronization phenomenon in complex networks of fractional-order
nonlinear oscillators. Specifically, we will investigate the synchro-
nization dynamics of a star network composed of N-coupled
fractional-order systems. After a brief overview of fractional deriva-
tives, the topology of star-coupled fractional-order systems is pre-
sented. Then by utilizing the stability theory of linear FDEs, we
derive a stability criterion which guarantees, if satisfied, that the
ensemble reaches complete network synchronization. Finally, we
provide numerical simulations to illustrate the effectiveness of the
theoretical analysis.

2. Preliminaries

2.1. Fractional derivatives

At present, there are many ways to define a fractional differen-
tial operator [1–3]. Here we adopt the most common one of them:

Dq∗ f (t) = Jm−q f m(t), (1)

where m := �q� is just the value q around up to the nearest integer,
i.e., m − 1 < q < m. Here f (m) is the ordinary mth derivative of f ,
and Jμ is the Riemann–Liouville integral operator of order μ > 0,
defined by

Jμg(t) = 1

�(μ)

t∫
0

(t − τ )μ−1 g(τ )dτ , (2)

where �(·) denotes the gamma function. It is common practice
to call the operator Dq∗ the “q-order Caputo differential operator”,
which has emerged as an useful tool for modeling many phenom-
ena in physics and engineering. For the range of q, a particularly
important case in many engineering applications is 0 < q < 1. In
this situation, (1) together with (2) reduced to

dq f (t)

dtq
= 1

�(1 − q)

t∫
0

(t − τ )−q f ′(τ )dτ , (3)

where dq f (t)
dtq � Dq∗ f (t), which will be used throughout this Letter.

According to the classical theory of ordinary differential equa-
tions (ODEs), we need to specify initial conditions to make sure
that the solution is unique. The Caputo fractional derivative is
considered in this Letter because it allows initial conditions
given in terms of integer-order derivatives, which represent well-
understood features of a physical situation and therefore their
values can be measured accurately.

2.2. Stability theory of fractional differential equations

Now, we present a stability theorem for the incommensurate
fractional-order systems which will be used in the next section.
Consider the following n-dimensional linear fractional-order sys-
tem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq1 x1

dtq1
= a11x1 + a12x2 + · · · + a1nxn,

dq2 x2

dtq2
= a21x1 + a22x2 + · · · + a2nxn,

...
dqn xn

dtqn
= an1x1 + an2x2 + · · · + annxn,

(4)

where all qi (i = 1,2, . . . ,n) are rational numbers between 0 and 1.
Assume M is the lowest common multiple of the denominators ui
of qi , where qi = vi/ui , (ui, vi) = 1, ui, vi ∈ Z+ , for i = 1,2, . . . ,n.
Define

Δ(λ) =

⎛
⎜⎜⎝

λMq1 − a11 −a12 · · · −a1n

−a21 λMq2 − a22 · · · −a2n
...

...
. . .

...

−an1 −an2 · · · λMqn − ann

⎞
⎟⎟⎠ . (5)

Lemma 1. (See [28].) The zero solution of system (4) is globally asymp-
totically stable in the Lyapunov sense if all roots λ of the equation
det(Δ(λ)) = 0 satisfy |arg(λ)| > π/2M.

3. Synchronization of star-coupled fractional-order systems

Throughout this Letter, we will denote scalar variables in lower
case, and vectors (or vector-valued functions) in bold-type lower
case, and matrices in bold-type upper case. We consider an en-
semble of N cells, coupled through a major element, with each cell
being an m-dimensional system obeying the standard fractional ki-
netic equations:

dqx

dtq = Ax + h(x), (6)

where x(t) = (x1(t), x2(t), . . . , xm(t))T ∈ Rm is the state variable,
A ∈ Rm×m is a constant matrix, and h : Rm → Rm defines a con-
tinuously vector-valued function. With the fractional orders q =
(q1,q2, . . . ,qm), we define

dqx(t)

dtq =
(

dq1 x1(t)

dtq1
,

dq2 x2(t)

dtq2
, . . . ,

dqm xm(t)

dtqm

)T

. (7)

Many fractional-order chaotic systems can be described by sys-
tem (6), such as fractional-order Lorenz system [11], fractional-
order Rössler system [12], fractional-order Chen system [13], and
fractional-order unified system [15], just to mention a few. Assume
that function g is sufficiently differentiable, Eq. (6) has a contin-
uous, differential and bounded solution and its derivative function
is also bounded for some fractional orders [29–31].

The entire network is a system of m(N + 1) fractional differen-
tial equations. In particular, the state equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqx1

dtq = Ax1 + h(x1) + K 1(z − x1),

dqx2

dtq = Ax2 + h(x2) + K 2(z − x2),

...
dqxN

dtq = AxN + h(xN) + K N(z − xN),

dq z

dtq = Az + h(z) +
N∑

j=1

[
K j(x j − z)

]
.

(8)

The system (8) consists of a population of N identical noninter-
acting elements xi and of the major element z, which is coupled
to each of the elements xi with the coupling strength K i ∈ Rm×m .
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