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The modified function projective lag synchronization (MFPLS) is proposed in this Letter, in which the
states of two chaotic systems are asymptotically lag synchronized up to a desired scaling function matrix.
Based on Lyapunov stability theory, a general method of MFPLS is investigated. The scheme is successfully
applied to two groups examples, which are the MFPLS between Lorenz system and Lü system, and two
identical hyper-chaotic Chen system. Corresponding numerical simulations are performed to verify and
illustrate the analytical results.
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1. Introduction

Chaos synchronization is a hot subject in the field of nonlin-
ear science due to its wide-scope potential applications in physical
systems, biological networks, secure communications, etc. Since
the pioneering works by Pecora and Carroll [1], in which pro-
posed a successful method to synchronize two identical chaotic
systems with different initial conditions, various types of synchro-
nization phenomena have been revealed to synchronize chaotic
systems [2–6]. Amongst all kinds of chaos synchronization, pro-
jective synchronization [6] has received much attention [7–11]
as it can obtain faster communication with its proportional fea-
ture.

Considered a time delay will affect the projective synchroniza-
tion of chaotic systems, some authors [12–14] study the problem
of projective synchronization with time delay. Projective lag syn-
chronization was proposed by Li in [12], where a driven chaotic
system synchronizes the past state of the driver up to a scaling fac-
tor α. Namely, the response system’s output lags behind the output
of the driver system proportionally. Ref. [13] investigated the prob-
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lem of full state hybrid lag projective synchronization in chaotic
systems. Ref. [14] reported on generalized projective synchroniza-
tion between two identical time delay chaotic systems with single
time delays.

In recent years, another regime of projective synchronization
called function projective synchronization (FPS) was also exten-
sively investigated [15–19], in which the drive and response sys-
tems can synchronize up to a desired scaling function. Because
the unpredictability of the scaling function in FPS can additionally
enhance the security of communication. Recently a more general
form of function projective synchronization, which is named as
modified function projective synchronization (MFPS), has been pro-
posed in [20]. MFPS means the master and slave systems could be
synchronized up to a scaling function matrix. The novelty feature
of this synchronization phenomenon is that the scaling functions
can be arbitrarily designed to different state variables by means of
control.

Motivated by the existing works and take into account of the
time delay, we investigate a new type of synchronization pheno-
menon, modified function projective lag synchronization (MFPLS),
which makes the states of two chaotic systems asymptotically lag
synchronized up to a desired scaling function matrix. Furthermore,
a general method is presented to realize MFPLS. To the best of
our knowledge, at present, there are few theoretical results about
MFPLS.

The organization of this Letter is as follows: In Section 2, the
definition of MFPLS is given. In Section 3, a general scheme of
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MFPLS is presented in two chaotic systems. In Section 4, two
groups of examples are used to verify the effectiveness of the pro-
posed scheme. The conclusion is finally drawn in Section 5.

2. The definition of MFPLS

The drive system and the response system are defined below

ẋ(t) = f
(
x(t)

)
, (1)

ẏ(t) = g
(

y(t)
) + u(t), (2)

where x, y ∈ Rn are the state vectors, f , g : Rn → Rn are contin-
uous nonlinear vector functions, u(t) is the vector controller. We
define the error vector

e(t) = x(t − τ ) − Λ(t)y(t), (3)

where Λ(t) = diag(α1(t),α2(t), . . . ,αn(t)) is reversible and differ-
entiable, where αi(t) �= 0 is a continuously differentiable function
with bounded.

Definition 1 (MFPLS). For the drive system (1) and the response
system (2), it is said that the system (1) and the system (2)
are modified function projective lag synchronization, if there ex-
ist a delay time τ and a scaling function matrix Λ(t) such that
limt→∞ ‖x(t − τ ) − Λ(t)y(t)‖ = 0.

3. A general method for MFPLS

The drive and response systems are defined as Eqs. (1) and
(2). Our goal is to make MFPLS between the drive system (1)
and the response system (2) by designing the control law u, i.e.
limt→∞ ‖e(t)‖ = 0.

Theorem 1. For given a synchronization scaling function matrix Λ(t), a
delay time τ and any initial conditions x(0), y(0), the MFPLS between
the drive system (1) and the response system (2) will occur by the control
law (4) as below

u(t) = Λ−1(t)
[

f
(
x(t − τ )

) − Λ(t)g
(

y(t)
) − Λ̇(t)y(t) + e(t)

]
,

(4)

where e(t) = x(t − τ ) − Λ(t)y(t).

Proof. The time derivative of the error vector (3) is

ė(t) = ẋ(t − τ ) − Λ(t) ẏ(t) − Λ̇(t)y(t). (5)

Substituting (1) and (2) into (5), we have

ė(t) = f
(
x(t − τ )

) − Λ(t)g
(

y(t)
) − Λ(t)u(t) − Λ̇(t)y(t). (6)

Construct Lyapunov function

V = 1

2
eT (t)e(t). (7)

With the choice of the controller (4), the time derivative of V
along the trajectories of Eq. (6) is

V̇ = eT (t)ė(t)

= eT (t)
[

f
(
x(t − τ )

) − Λ(t)g
(

y(t)
) − Λ(t)u(t) − Λ̇(t)y(t)

]

= −eT (t)e(t). (8)

It is clear that V is positive definite and V̇ is negative definite.
According to the Lyapunov stability theory, the error vector e(t)
asymptotically tends to zero leading to MFPLS occur. This com-
pletes the proof. �

Remark 1. Note that Theorem 1 can also encompass the MFPLS
scheme of two identical chaotic systems when the vector function
g = f in Eq. (4).

Remark 2. Note that Theorem 1 just given a general scheme of
MFPLS in theory, according to the characters of the practical syn-
chronized systems, the complexity of the controller could be re-
duced, appropriately. How to derive a simple general controller for
synchronizing any two chaotic systems is needed to further inves-
tigate.

4. Illustrative example

In this section, we will give two groups of examples to verify
the effectiveness of the proposed scheme, which are chaotic Lorenz
and Lü systems, and two identical hyper-chaotic Chen systems.
Numerical simulations are performed to demonstrate the effective-
ness of the proposed method.

4.1. MFPLS between chaotic Lorenz and Lü systems

We take chaotic Lorenz system as the drive system, which is
described by the following formulas
⎧⎨
⎩

ẋd = 10(yd − xd),

ẏd = (28 − zd)xd − yd,

żd = xd yd − 8/3zd,

(9)

where xd, yd and zd are state variables.
The chaotic Lü system, as a response system, is given by

⎧⎨
⎩

ẋr = 36(yr − xr) + u1,

ẏr = −xr zr + 20yr + u2,

żr = xr yr − 3zr + u3,

(10)

where xr , yr and zr are state variables, u1, u2 and u3 are the
nonlinear control laws such that two chaotic systems can be syn-
chronized in the sense of MFPLS.

We define the MFPLS errors as
⎧⎨
⎩

e1(t) = xd(t − τ ) − α1(t)xr(t),

e2(t) = yd(t − τ ) − α2(t)yr(t),

e3(t) = zd(t − τ ) − α3(t)zr(t),

(11)

where α1(t), α2(t) and α3(t) are the scaling functions.
According to Eq. (4) in Theorem 1, we get the controller

u =

⎡
⎢⎢⎣

10(ydτ −xdτ )−36α1(t)(yr−xr)−α̇1(t)xr+e1
α1(t)

(28−zdτ )xdτ −ydτ −α2(t)(−xr zr+20yr)−α̇2(t)yr+e2
α2(t)

xdτ ydτ −8zdτ /3−α3(t)(xr yr−3zr)−α̇3(t)zr+e3
α3(t)

⎤
⎥⎥⎦ , (12)

where xdτ = xd(t − τ ), ydτ = yd(t − τ ), zdτ = zd(t − τ ), xr = xr(t),
yr = yr(t), zr = zr(t).

To verify and show the effectiveness of the controller (12),
fourth-order Runge–Kutta method is used with time step being
equal to 0.001. In numerical simulations, we assume that α1(t) =
sin(t)+ 2, α2(t) = sin(t)+ 3, α3(t) = sin(t)+ 4 and τ = 2. The sim-
ulation results are shown in Figs. 1 and 2.

The time evolution of the MFPLS errors are depicted in Fig. 1,
which displays e → 0 with t → ∞. Thus, the required synchro-
nization has been achieved with our designed control law (12).
The scaling functions α1(t), α2(t) and α3(t) are depicted in Fig. 2,
which tend to the predefined scaling functions. These results show
that MFPLS takes place with the desired scaling function matrix.
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