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Modulation instability is investigated in two cubic–quintic Ginzburg–Landau equations coupled with a
cross phase modulation type term. After carrying out a stability analysis an expression for gain is ob-
tained. Some direct simulations to see the evolution of different continuous wave states are reported.
These show the formation of modulation instability pulses as well as transitions from lower amplitude
continuous wave states to higher amplitude continuous wave states.
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1. Introduction

A continuous wave (CW) is subject to modulational instability
(MI) under the action of non-linearity in combination with disper-
sion. As result of MI a continuous wave propagating in a nonlinear
dispersive medium may suffer the instability with respect to weak
periodic modulations of the steady-state. Due to the interaction
between a strong harmonic carrier wave and small sidebands dis-
placed a little in frequency get to the breakup of CW into a train
of ultra short pulses [1,2]. The development of the theory of MI
started in the 1960s, simultaneously to hydrodynamics and non-
linear optics. MI was also observed in different physical systems
such as fluid dynamics or plasma physics [3,4]. A recent review
about the beginning of MI can be found in [2]. In nonlinear optics
MI has been studied for beam propagation in optical fibers using
scalar and vectorial descriptions. In a scalar description MI occurs
only in anomalous dispersion regime while in a vectorial descrip-
tion occurs also in the normal dispersion regime [5,6].

Our principal aim is to investigate the properties of the MI of
two complex Ginzburg–Landau equations (CGLE) with both cubic
and quintic terms coupled with a cubic term. The CGLE is a generic
equation describing systems near subcritic bifurcations related to
a wide range of dissipative phenomena in physics [7]. CGLE have
been used to simulate pulse propagation in fibers including higher
order effects [8,9].

The CGLE is an extension of the nonlinear Schrödinger equa-
tion (NLSE) including terms for nonlinear gain and saturation of
the nonlinear refractive index. The propagation of vectorial pulses
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in birefringence fibers could be modelled using two NLSE coupled
with a cross-phase modulation (XPM) term [10,5]. An extension
of this model uses two cubic-quintic nonlinear Schrödinger equa-
tions (CQNLS) with a coupling term obtained from an interaction
Hamiltonian that takes into account both the XPM and higher-
order terms, which only produce a small correction to the XPM
term [11]. According to this, a system of two CGLE coupled with a
XPM term is an extension of those models, to include spectral fil-
tering or parabolic gain, nonlinear gain or absorption processes and
higher-order correction to the nonlinear amplification/absorption
and the intensity-dependent refractive index. Thus, we will con-
sider a symmetric system of equations for the amplitudes U and V
of the two components of a field in a birefringence fiber:
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where D , δ, β , ε , μ, α, and ν are real constants, U and V are
complex fields. By a proper rescaling and without lossing gener-
ality D can be restricted to have the values D = ±1. When used
to describing propagation of light in optical fiber, t is a retarded
time, z is the propagation distance, ψ is the complex envelope
of the electric field, D is the dispersion coefficient, δ gives ac-
count of the linear gain, β describes spectral filtering or parabolic
gain (if β > 0), ε refers to nonlinear gain or absorption processes,
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Fig. 1. G+ and G− as functions of Ω and B for the solution set (Al, Cl,ωl) and the system parameters: β = 1, ε = 0.7, μ = −0.01, ν = −0.1 and δ = −0.1.

μ represents a higher-order correction to the nonlinear amplifi-
cation/absorption, and ν is a higher order correction term to the
intensity-dependent refractive index [8]. B is the coupling param-
eter and α governs the group-velocity mismatch between the two
components. In order to a simplest description we are going to
consider only the case α = 0. In this situation, B = 2 corresponds
to low-birefringence fibers. Stable soliton solutions of the CGLE in
one dimension exists only for the following choices of the signs of
the coefficients: δ, μ < 0, β , ε > 0, and any sign for ν and D [12].
Since MI can develop stable pulses we will restrict to the above
choices of the signs of the coefficients.

The Letter is organised as follows: in Section 2, we obtain the
analytic expressions for the gain by the MI. In Section 3, we sim-
ulate the dynamics of the initial steady CW states under the weak
modulational instability. The conclusions are followed in Section 4.

2. Stability analysis and MI gain

In order to investigate the evolution of weak perturbations
along the propagation distance, we carry out a linear-stability anal-
ysis. First, we look for a CW solution of the system described by
(1) and (2) given by:

U = Aeiωz (3)

V = Ceiωz (4)

By substituting in Eqs. (1) and (2) with t-derivative terms equal
to zero, requiring both imaginary and real terms to be zero, we
obtain:

δ + (ε + i)A2 + (μ + iν)A4 − iω + iBC2 = 0

δ + (ε + i)C2 + (μ + iν)C4 − iω + iB A2 = 0 (5)

which yields four sets of stationary solutions. Two of them
matches with what we call symmetric case, where A = C :

A2
l,h = C2

l,h = −ε ± √
ε2 − 4μδ

2μ

ω = C2
l,h

(
1 + B − ε

ν

μ

)
− δν

μ
(6)

where the subscripts l (for low) and h (for high) correspond to the
+ and − signs, respectively. Thus, Al < Ah .

The other two sets correspond to the asymmetric case, where
A �= C . These solutions can be written as (Al, Ch,ω) and (Ah, Cl,ω)

where Al, Ah, Cl, Ch and ω are given by Eqs. (6).

We note than the solution sets are functions of the system pa-
rameters except for the spectral filtering term β . This also occurs
in systems described by two CGLE coupled with a linear term [13].
Moreover, A (or C ) values are the same as those for 1D CGLE. As
reported by [14], Al (or Cl) is unstable whereas Ah (or Ch) is sta-
ble. As the XPM term has no contribution to the gain, we think
that for symmetric case, the solution (Al, Cl,ω) becomes unstable
whereas (Ah, Ch,ω) remains stable.

In order to examine the linear-stability of the CW states we
introduce the perturbed fields of the form

U (z, t) = [
A + u(z, t)

]
eiωz

V (z, t) = [
C + v(z, t)

]
eiωz (7)

where |u(z, t)| � A, C and |v(z, t)| � A, C . Substituting in Eqs. (1)
and (2) and retaining linear terms of u and v , we obtain two lin-
earized equations:
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where ∗ denotes complex conjugate. We assume general solutions
of the form

u(z, t) = a1ei(kz−Ωt) + a2e−i(kz−Ωt)

v(z, t) = b1ei(kz−Ωt) + b2e−i(kz−Ωt) (10)

where k and Ω represent the wave number and the frequency of
modulation, respectively. Inserting Eq. (10) to Eqs. (8) and (9), we
obtain four equations to a1, a2, a3 and a4. For the symmetric case,
these equations are:

ika1 =
(

β + i
D

2

)(−Ω2)a1 + (λ1 + iλ2)(a1 + a2)

+ iB A2(b1 + b2)
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