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In this Letter we study possible intervals for some parameters existing in the Peyrard–Bishop–Dauxois
(PBD) model for the DNA dynamics. These parameters describe longitudinal and helicoidal interactions
between nucleotides and a Morse potential approximating transverse interactions. We also estimate a
possible interval for a wave number of a carrier component of a modulated solitonic wave. Finally, we
compare our statements with experimental value of solitonic velocity in DNA.
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1. Introduction

To study DNA dynamics we very often need to guess values of
some still unknown parameters. The purpose of this Letter is to
give possible intervals for these parameters. This will certainly al-
low better and easier estimations and calculations related to future
DNA research.

In this Letter we rely on the Peyrard–Bishop–Dauxois (PBD)
model for the DNA dynamics [1]. This model, taking helicoidal
structure into consideration, represents an extended version of a
former Peyrard–Bishop (PB) model [2]. We assume that readers are
familiar with this model. Hence, in Section 2, we only give some
basic features of the model.

Sections 3 and 4 are primarily devoted to a ratio of the har-
monic constants of the longitudinal and helicoidal springs. Possible
values of this ratio are estimated according to two criteria.

According to the PBD model, DNA dynamics is described by
a solitonic wave, which is a localized modulated wave called
breather. To calculate a solitonic width, an amplitude, etc., we
should know the wavelength of the carrier component. The value
of this parameter is estimated in Sections 4 and 5.
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Finally, in Section 6, we use the basic characteristics of the soli-
tonic wave to show how the upper limits of the very troublesome
parameters of the longitudinal and the helicoidal springs can be
determined.

One can find a variety of the values of these parameters in lit-
erature. This is why we did our best to be systematic as much
as possible. We use different procedures to estimate the values of
these parameters. For example, in Sections 3 and 4 our estimates
are based on satisfying some constraints of the model. In Section 5
we estimate the upper limit of the solitonic carrier wave width fol-
lowing physical arguments only. Finally, in Section 6 we deal with
four parameters. For two of them we rely on experimental results
while for the remaining two we suggest a procedure for their es-
timations based on the very basic physical principle of nonlinear
DNA dynamics.

We close this Letter with the summary and concluding remarks
in Section 7.

2. The PBD model

In this section we very briefly describe the basic features of
the PBD model. The model assumes that DNA molecule is a homo-
geneous and periodic structure with a period l = 0.34 nm [1,3,4].
Only transversal motions of nucleotides are taken into consider-
ation. If un and vn are the transversal displacements of the nu-
cleotides of different strands at the site n from their equilibrium
positions then a Hamiltonian for DNA molecule is
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2740 S. Zdravković, M.V. Satarić / Physics Letters A 373 (2009) 2739–2745

H =
∑{

m

2

(
u̇2

n + v̇2
n

) + k

2

[
(un − un−1)

2 + (vn − vn−1)
2]

+ K

2

[
(un − vn+h)

2 + (un − vn−h)
2]

+ D
[
e−a(un−vn) − 1

]2
}

(1)

where m = 5.1 × 10−25 kg is the nucleotide mass and k and K are
harmonic constants of the longitudinal and the helicoidal springs,
respectively. The important helicoidal structure is taken into ac-
count through the harmonic interaction of the nucleotides having
the coordinates un and vn±h [1]. As the helix has a corresponding
pitch of about 10 nucleotide pairs per turn, we assume h = 5. The
last term in Eq. (1) is a Morse potential representing the transverse
interaction of the nucleotides at the same site where D and a are
the depth and the inverse width of the Morse potential well, re-
spectively. Note that, for K = 0, we obtain the Hamiltonian for the
PB model.

As DNA is assumed to be homogeneous the values for all these
parameters as well as the nucleotide masses are equal along the
chain. The value for m, mentioned above, is the average of the four
possible values.

Using coordinates xn and yn , describing the in-phase and the
out-of-phase transversal motions, defined through

xn = (un + vn)/
√

2, yn = (un − vn)/
√

2, (2)

we can obtain decoupled dynamical equations of motions [1,3,4]

mẍn = k(xn+1 + xn−1 − 2xn) + K (xn+h + xn−h − 2xn) (3)

and

mÿn = k(yn+1 + yn−1 − 2yn) − K (yn+h + yn−h + 2yn)

+ 2
√

2aD
(
e−a

√
2yn − 1

)
e−a

√
2yn . (4)

Of course, these equations are derived from the Hamiltonian (1).
All derivations and explanations can be found in Ref. [5].

The first of these decoupled equations describes usual linear
waves (phonons) while the second one describes the nonlinear
waves (breathers). Hence, we restrict our attention on Eq. (4) and
look for the solution yn(t). To solve this problem we use a semi-
discrete approximation [6]. This means that we assume small, but
still nonlinear oscillations

yn(t) = εΦn(t) (ε � 1) (5)

and a series expansion [3–6]

Φn(t) = F1(ξ)eiθn + ε
⌊

F0(ξ) + F2(ξ)ei2θn
⌋ + cc + O

(
ε2), (6)

ξ = (εnl, εt), θn = nql − ωt, (7)

where ω is the optical frequency of corresponding linear approxi-
mation, q = 2π/λ is the wave number of a carrier wave, F0 is real
and cc stands for complex-conjugate.

One can show that functions F0 and F2 can be expressed
through F1 as [1,3–5]

F0 = μ|F1|2, F2 = δF 2
1 (8)

where

μ = −2α
(
1 + K/a2 D

)−1
, (9)

δ = mω2
gα

[
4mω2 − 2k

(
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)
− 2K

(
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) − 4a2 D
]−1

, (10)

ω2 = (4/m)
[
a2 D + k sin2(ql/2) + K cos2(qhl/2)

]
, (11)

and

ω2
g = 4a2 D/m, α = −3a/

√
2, β = 7a2/3. (12)

The function F1 is a solution of the nonlinear Schrödinger equation
(NLSE):

i F1τ + P F1S S + Q |F1|2 F1 = 0 (13)

where τ and S are rescaled time and space variables [1,3–5].
P and Q are a dispersion and a nonlinear parameter, respectively:

P = 1

2ω

{
l2

m

[
k cos(ql) − Kh2 cos(qhl)

] − V 2
g

}
, (14)

Q = −ω2
g

2ω

[
2α(μ + δ) + 3β

]
, (15)

while the group velocity is

V g ≡ dω

dq
= l

mω

[
k sin(ql) − Kh sin(qhl)

]
. (16)

A solution of Eq. (13), relevant for this Letter, exists if P Q > 0.
This can be found in aforementioned references. In this Letter we
assume that both P and Q are positive [7]. All this brings about
the following expression for the function yn(t) [1,3–5,7]:

yn(t) = 2εA sech

(
ε(nl − V et)

Le

){
cos(Θnl − Ωt)

+ εA sech

(
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)[
μ

2
+ δ cos

(
2(Θnl − Ωt)

)]}
+ O

(
ε3) (17)

where

V e = V g + εue, εA = ε

√
u2

e − 2ueuc

2P Q
, (18)

Θ = q + εue

2P
,
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ε
= 2P

ε
√

u2
e − 2ueuc

, (19)

and

Ω = ω + (V g + εuc)εue

2P
. (20)

We have already explained a source of the parameter ε in
Eqs. (5)–(7). There are two more parameters coming from the
mathematical procedure and these are ue and uc , the envelope and
the carrier wave velocities of the function F1, and there should be

ue > 2uc. (21)

If we look at all the formulas where these three parameters exist
we can notice that all these expressions depend on two parame-
ters only. These are εue and εuc . Hence, there are two rather than
three parameters coming from the mathematical procedure. It is
convenient to introduce a new parameter η defined through

uc = ηue, η ∈ [0,0.5). (22)

According to Eq. (17) it is obvious that the envelope and the
carrier wave velocities are V e and Ω/Θ . In Refs. [8,9] we sug-
gested a coherent mode meaning that these velocities are equal.
This means that yn(t) is one phase function. From the equality of
these two velocities one can express εue as a function of η [4,9]

z ≡ εue = P

1 − η

[
−q + q

√
1 + 2(1 − η)

Pq2
(ω − qV g)

]
. (23)
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