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We consider a single two-level atom and exciton mode in a microcavity system. The second-order
correlation function and the continuous-variable entanglement between the cavity and exciton mode
are investigated. It is found that nonclassical (antibunching) effect and continuous-variable entangled
light can be generated. One advantage of this system is that the generation of continuous-variable
entanglement can be controlled by tuning the frequency of the pumping field.
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1. Introduction

It has been proved that continuous-variable (C-V) entanglement is an important part of quantum information theory [1]. The main
motivation to deal with continuous variables in quantum information originates from a more practical observation: utilizing continuous
quadrature amplitudes of the quantized electromagnetic field, efficient implementation of the quantum communication protocols are
achieved in quantum optics. After the first demonstration of the C-V entanglement [2], the generation of C-V entanglement has been
implemented in experiments [1]. The classical scheme to produce the C-V entanglement is parametric down-conversion. However, it
remains a challenge to generate macroscopic entangled light rather than few photon numbers. Promising candidates for generating of
macroscopic entangled light are optical amplifier [3–9]. In this setup, the main medium can be thought of as a stream of suitably prepared
atom(s).

On the other hand, with the development of semiconductor optical microcavities, strong interest has been attracted in exciton–cavity
coupled systems [10–15]. Microcavity polaritons, which have been observed for the first time in Ref. [10], play a central role in under-
standing the linear optical properties of quantum wells embedded in semiconductor microcavities [16]. Wang et al. [17] have studied the
effects of homogeneous broadening of excitons on normal mode oscillations in semiconductor microcavity. A quantum well with a single
exciton mode in a microcavity driven by squeezed vacuum has been investigated in the low exciton density regime [15]. Savasta et al. [18]
have shown the possibility that entangled photons can be produced by biexciton-resonant hyper-parametric scattering in semiconductors
quantum well, which has been experimentally realized in a CuCl bulk by Edamatsu et al. [19]. The increase of entangled-photon generation
from a CuCl quantum well (QW) confined in a planar microcavity has been theoretically discussed by Ajiki et al. It has been demonstrated
that the generation efficiency can be strongly enhanced when the biexciton–cavity coupling is realized [11].

The recent theoretical and experimental studies have brought the proof of squeezing in semiconductor microcavities with quantum
wells [20–24]. However, to our knowledge, few authors investigate the entanglement property between the cavity and exciton in semi-
conductor microcavity system. Contrasted with previous work [15], in this Letter a single two-level atom is introduced. We consider a
single two-level atom and exciton mode in a microcavity driven by an external field. Using the Fokker–Planck approach which has some
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Fig. 1. An outline of a single two-level atom and exciton mode in a microcavity driven by an external classical field.

appealing features [15,26], and following the solution of a generalized second-order Fokker–Planck equation, we study the second-order
correlation function and the C-V entanglement between the cavity and exciton in the bad-cavity (exciton) limit. It shows that our system
can exhibit nonclassical (antibunching) effect as well as generate C-V entanglement in steady state. Especially, this two-level atom can be
used to control the generation of C-V entanglement.

2. Model and master equation

We consider a single two-level atom and exciton mode in a microcavity driven by an external classical field. The configuration of this
system is depicted in Fig. 1. A semiconductor quantum well and a single two-level atom are inserted into two Bragg reflecting mirrors
(the atom is trapped in this microcavity). The internal two side of Bragg reflecting mirrors are separated by a distance about the order of
the wavelength λ. It is noted that inside the cavity the atom and the quantum well are not interact with each other. The atom is coupled
to a broadband squeezed vacuum centered about the atomic resonance frequency ωa . The model of our system can be implemented by
assuming a short microcavity, which subtends a large solid angle at the atom. We assume the density of excitons is so small that exciton-
exciton interaction can be ignored. The excitons in microcavity can be approximated a dilute boson gas [25]. Thus in this approximation
and the electric-dipole and the rotating-wave approximation the full Hamiltonian for this system can be written as [26–28]

H = �câ†â + �ωb̂†b̂ + �aσ̂z + ig1
(
â†σ̂− − aσ̂+

) + iε
(
â† − â

) + ig2
(
â†b̂ − âb̂†), (1)

noted that we have assumed that there is no interaction between the atom and exciton. Where â (â†) and b̂ (b̂†) represent the annihilation
(creation) operators of cavity field and exciton. g1 and g2 are the atom-field and exciton–cavity coupling constants, respectively, and ε is
the amplitude of the external driving field. σ̂+ , σ̂− and σ̂z are the Pauli spin operators which describe the two-level atom and satisfy the
communication relations [σ̂+, σ̂−] = 2σ̂z , [σ̂±, σ̂z] = ∓σ̂± . The atomic detuning �a , the cavity detuning �c and the exciton detuning �ω

are defined by

�a = ωa − ω0, �c = ωc − ω0, �ω = ωe − ωc, (2)

where ωe , ωc , ωa and ω0 are the frequencies of exciton, cavity, atom and external field, respectively. Now considered the loss of the cavity
(exciton) and the spontaneous emission of the atom, the master equation for the density operator ρ̂(t) of our system can be written as

dρ

dt
= −i�c

[
â†â,ρ

] − i�ω

[
b̂†b̂,ρ

] − i�a[σ̂z,ρ] + g1
[
â†σ̂− − âσ̂+,ρ

] + g2
[
â†b̂ − âb̂+,ρ

] + ε
[
â† − â,ρ

]

+ γ

2
(2σ̂−ρσ̂+ − σ̂+σ̂−ρ − ρσ̂+σ̂−) + κ1

(
2âρâ† − â†âρ − ρâ†â

) + κ2
(
2b̂ρb̂† − b̂†b̂ρ − ρb̂†b̂

)
, (3)

where γ is the spontaneous emission rate of the two-level atom in the cavity. κ1 (κ2) is the cavity (exciton) loss.

3. The solution of the master equation

In this section we will derive the solution of the master equation following the method introduced by Jordon [29]. For a two-level
atom the atomic density operator Γa can be expressed as

Γa =
2∑

i, j=1

si j|i〉〈 j| = s11|1〉〈1| + s22|2〉〈2| + s21|2〉〈1| + s12|1〉〈2|, (4)

where si j is constant. Using the relations between the elements s21 = s∗
12, s11 + s22 = 1 and introducing s22 − s11 = 2m, s21 = μ, we can

express the density operator ρ(t) as

ρ̂(t) =
∫

P (α,α∗, β,β∗,μ,μ∗,m, t)|αβ〉〈αβ|Γa d2α d2β d2μdm

=
∫

P (α,α∗, β,β∗,μ,μ∗,m, t)|αβ〉〈αβ|[2mσ̂z + 1/2 + μσ̂+ + μ∗σ̂−]d2α d2β d2μdm, (5)

where |α〉 (|β〉) is a coherent state of operator â (b̂) with the eigenvalue α (β). μ, μ∗ and m represent c-number variables corresponding
to the quantum operators σ̂− , σ̂+ and σ̂z , respectively. In order to determine the weight function P , followed the procedure used in the
Ref. [26], the Fokker–Planck equation can be obtained
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