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Reconstruction of driving forces through recurrence plots
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We consider the problem of reconstructing one-dimensional driving forces only from the observations
of driven systems. We extend the approach presented in a seminal paper [M.C. Casdagli, Physica D
108 (1997) 12] and propose a method that is robust and has wider applicability. By reinterpreting the
work of Thiel et al. [M. Thiel, M.C. Romano, J. Kurths, Phys. Lett. A 330 (2004) 343], we formulate the
reconstruction problem as a combinatorial optimization problem and relax conditions by assuming that a
driving force is continuous. The method is demonstrated by using a tent map driven by an external force.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Nonstationary time series are ubiquitous in science and tech-
nology. Recurrence plots (RPs) [1,2] of nonstationary time series
provide useful information on time series [3–7].

One of the common models of nonstationary systems is a de-
terministic dynamical system driven by a slowly varying parameter
[3,8]. In this model, usually the slowly varying parameter is not
known and has to be reconstructed from the observations of the
driven system. Casdagli [3] has shown that in a sufficiently large
embedding space, the RP of the driven system becomes similar to
that of the slowly varying parameter. He has also reconstructed
the waveform of the slowly varying parameter on the basis of
the fact that a part of the RP of a driven system matches the
waveform of its slowly varying parameter under some conditions.
Therefore, we can interpret that Casdagli has divided the problem
for reconstructing the slowly varying parameter into two parts: the
approximation of the RP of the slowly varying parameter and the
reconstruction of the original signal from the RP. Although the ap-
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proximation part is quite generic, the reconstruction part is imper-
fect because the slowly varying parameter should take the global
maximum at the first local maximum.

There is another solution for the reconstruction of the original
signal from the RP. Thiel et al. [9] has shown that the original sig-
nal can be reconstructed from an RP if the RP is obtained by con-
sidering a one-dimensional embedding space. If we combine the
solution obtained by Casdagli by approximation with the method
proposed by Thiel et al., we may be able to reconstruct the origi-
nal signal in various problems. However, the method proposed by
Thiel et al. is applicable only for RPs generated cleanly from a time
series. In our study, the method proposed by Thiel et al. is not ap-
plicable since the RP is obtained by approximation.

In this study, we propose a method to reconstruct the original
signal from its RP that is not generated cleanly from a time series.
First, we reinterpret the method of Thiel et al. as a problem of
combinatorial optimization. Then, assuming the slowly varying pa-
rameter to be continuous, we modify the objective function of the
combinatorial optimization in two ways. We show that, by using
the proposed methods, it is possible to reconstruct a wider variety
of slowly varying driving forces.

The rest of this Letter is organized as follows. In Section 2, we
introduce a method for reconstructing a driving force from an RP.
In Section 3, we formulate the combinatorial optimization prob-
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lem for reconstructing the original signal from its RP. In Section 4,
we propose two objective functions for cases where RPs are not
generated cleanly from time series. In Section 5, we present an
example of a tent map driven by a one-dimensional driving force
and also discuss the effects of changing the parameters in the ob-
jective functions. In Section 6, we present the conclusions of this
study.

2. Recurrence plots of externally driven systems

2.1. Dynamical systems driven by external forces

A large number of nonlinear phenomena are observed in the
world. For modeling them, sometimes dynamical systems driven
by slowly varying external forces are considered. These systems
may be defined by

si+1 = f (si, γi), xi = h(si), (1)

where si is a state of the system, γi is a slowly varying driving
force, and xi is an observation at time i.

We assume that {xi} can be observed, but not {γi}. Then we
need to estimate {γi} from {xi}.

2.2. Recurrence plots

Recurrence plots (RPs) [1,2] are used for visualizing the correla-
tions within a time series. In order to generate an RP from a time
series {xi}i=1,...,N of length N , first, we consider a vector vi defined
by

vi = (xi, xi+τ , . . . , xi+(m−1)τ ), i = 1, . . . , Nm, (2)

where τ is the time delay, m is the embedding dimension, and
Nm = N − (m − 1)τ . In this study, we set τ = 1.

Next, we consider a two-dimensional plane in which two axes
represent time. In this plane, a point exists at (i, j) if ‖vi − v j‖ � r.
The distribution of the points in this plane gives the RP. We ex-
press this distribution of points by

R(i, j) =
{

1, when ‖vi − v j‖ � r,
0, otherwise.

(3)

When R(i, j) = 1, there exists a point at (i, j) in the plane. When
R(i, j) = 0, no such point exists in the plane. In this study, we use
the maximum norm for the calculation of ‖vi − v j‖.

There are some studies in which RPs are quantified [10–15]. We
can estimate dynamical invariants such as correlation entropy and
correlation dimension from RPs [12,14]. Thus, it appears that RPs
can provide a large amount of information on the original time
series. In fact, it is known that the original time series can be re-
constructed from their RPs under certain conditions [9,16]. In this
study, we propose reconstruction methods that can be used un-
der relaxed conditions by assuming that the original time series
are continuous. The details of these methods are discussed in Sec-
tions 3 and 4.

2.3. Estimation of recurrence rate

Casdagli [3] has shown that the RP of a driving force can be
approximated from the RP from the driven system. Since his study
forms an important foundation of our study, we briefly summarize
the result of this study.

First, we consider the density of all the points in an RP, which
is called the recurrence rate Cm(r) and given by

Cm(r) = 2

Nm(Nm − 1)

Nm∑
i=1

i−1∑
j=1

Θ
(
r − ‖vi − v j‖

)
, (4)

where Θ is the Heaviside step function.
Among the points in an RP, the points at (i, j) such that the

distance between γi and γ j is larger than the threshold ε > 0 are
undesirable in the approximation of the RP of the driving force.
The density of these undesirable points, which is called the false
recurrence rate P F

m(r, ε), is given by

P F
m(r, ε) = Cm(r) − 2

Nm(Nm − 1)

×
Nm∑
i=1

i−1∑
j=1

Θ
(
r − ‖vi − v j‖

)
Θ

(
ε − ‖γi − γ j‖

)
. (5)

Then, under some genericity conditions, Cm(r) and P F
m(r, ε)

obey the following scaling laws:

Cm(r) =
{

O(rm), m � D,

O(rD), m > D,
(6)

P F
m(r, ε) �

{
O(rm), m � 2D − 1,

O(r2D−1), m > 2D − 1,
(7)

respectively, where D denotes the fractal dimension of the set
{(si, γi)}.

If we assume m to be larger than D , it follows from the scaling
laws that P F

m(r, ε)/Cm(r) � O(rmin(m−D,D−1)). Therefore, for suffi-
ciently small r, P F

m(r, ε)/Cm(r) ≈ 0. This condition means that un-
desirable points vanish faster than the desirable points. Thus, the
RP constructed from the observations of a driven system can be
regarded as an approximation of the RP of the driving force.

3. Reconstruction of time series from recurrence plots

As explained in the previous section, the RP of a driving force
can be approximated from the RP of the driven system. If a good
approximation is obtained, then the next step is to reconstruct the
driving force from the approximated RP.

In this section, we consider a method to reconstruct a time se-
ries from its RP.

3.1. Formulation of problem

The reconstruction of the values in the original time series is
essentially impossible because RPs do not contain information on
the values in the original time series.

Hence, in this study, we reconstruct a rank order ρ of the time
series {xi}i=1,...,N . The rank order is defined as a permutation on
{1, . . . , N} that sorts the time series in the non-decreasing order,
namely, xρ−1(1) � · · · � xρ−1(N) . In other words, this order means
that each xi in {xi, i = 1, . . . , N} is the ρ(i)th smallest element
in the set. Thus, the time series ρ(1), . . . , ρ(N) roughly resembles
the time series x1, . . . , xN such that {ρ(i)} can be regarded to be
obtained using a monotonic function from the time series {xi}. Ad-
ditionally, we introduce an inverse rank order, which sorts the time
series in the non-increasing order, for ideal reconstruction, because
it is indistinguishable from the normal rank order if only the infor-
mation contained in an RP is considered.

Therefore, our problem is to find a permutation σ that satisfies
either xσ−1(1) � · · · � xσ−1(N) or xσ−1(1) � · · · � xσ−1(N) by using
only the information contained in an RP. To find σ , we have to
make some assumptions with respect to the generation of R from
the time series {xi}. First, we assume that R is cleanly generated
from {xi}, exactly in the manner defined in Section 2.2. However,
it should be noted that in our case only an approximate RP is ob-
tained; hence this assumption may not hold in our case.
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